Fluid-Structure Interaction

CFD Parallel Solvers and Fluid–Structure Interaction

May 8, 2013 | Paolo Crosetto

CFD Solvers Benchmarking

Motivations Equations CFD Software Nozzle FDA Benchmark Profiling

OpenFOAM Motivations

Fluid–Structure Interaction

Motivation Problem Formulation Preconditioners

Fluid-Structure Interaction

Motivations

Equations C

CFD Software

Nozzle FDA Benchmark

Table of contents CFD Solvers Benchmarking

Motivations Nozzle FDA Benchmark

Motivations

Open source CFD tools

- Widely used and developed in industry/research
- Broad variety of different methods and codes
- Active community distributing and maintaining the source codes
- Often the freely available tools have the same features/performance of the commercial ones!

Motivations

Open source CFD tools

- Widely used and developed in industry/research
- Broad variety of different methods and codes
- Active community distributing and maintaining the source codes
- Often the freely available tools have the same features/performance of the commercial ones!

Drawbacks

- Which tool should I use to solve my problem?
- Often scientists restart the development from scratch, too many codes implement the same thing
- High mortality of CFD codes
- Difficulty to use, lack of documentation.

Need of CFD benchmarks to test the sw and algorithms.

An example:

The Incompressible Navier-Stokes equations:

$$\rho_f \frac{\partial \mathbf{u}}{\partial t} + \rho_f [\mathbf{u} \cdot \nabla_x] \mathbf{u} - \mu_f \Delta_x \mathbf{u} + \nabla_x \mathbf{p} = \mathbf{f}_f \qquad \text{in } \Omega$$

$$abla_{\mathbf{X}} \cdot \mathbf{u} = 0$$
 in Ω .

Saddle point problem:

$$\begin{pmatrix} \mathcal{F} & \mathcal{B}^* \\ \mathcal{B} & O \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} \mathbf{f}_f \\ O \end{pmatrix}$$
$$A\mathbf{x} = \mathbf{b}$$

Equivalent to (Block LU):

$$\begin{pmatrix} \mathcal{F} & O \\ \mathcal{B} & \mathcal{S} \end{pmatrix} \begin{pmatrix} I & \mathcal{F}^{-1}\mathcal{B}^* \\ O & I \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} \mathbf{f}_f \\ O \end{pmatrix}$$
$$LU\mathbf{x} = \mathbf{b}$$

where the operator $S = BF^{-1}B^*$ corresponds to the Schur complement.

Paolo Crosetto

CFI

CFD Software

Nozzle FDA Benchmark

Solution Strategies

Equations

Splitting vs. non splitting

Splitting the solutions for **u** and *p*

- + solve s.p.d. system (CG) for the pressure (advantage in memory and time)
- nested iterations to reach convergence
- splitting error

Solving the monolithic system as a whole

- global nonsymmetric undefinite system (GMRES)
- + no nested subiterations
- via preconditioning one can recover some splitting methods

The separation between the two may not be crystal clear

$$\begin{pmatrix} \mathcal{F} & \mathcal{B}^* \\ \mathcal{B} & O \end{pmatrix} \xrightarrow{skipping} \begin{pmatrix} F & \mathcal{B}^T \\ \mathcal{B} & O \end{pmatrix}$$
(1)

Skipping the details about:

- time discretization (BDF);
- space discretization (FEM, FVM, FDM);
- nonlinearity (Newton, FP).

At the end of the discretization in general you end up with a block matrix like (1).

Splitting Schemes

Algebraic system:

$$\begin{pmatrix} F & O \\ B & S \end{pmatrix} \begin{pmatrix} I & F^{-1}B^T \\ O & I \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} \mathbf{f}_f \\ O \end{pmatrix}$$

$LU\mathbf{x} = \mathbf{b}$

with the Schur complement $S = BF^{-1}B^{T}$. Preconditioned system

 $P^{-1}LU{f x} = P^{-1}{f b}$

Choice:

$$P = \widetilde{L}\widetilde{U} = \begin{pmatrix} F & O \\ B & \widetilde{S} \end{pmatrix} \begin{pmatrix} I & \widetilde{F}^{-1}B^T \\ O & I \end{pmatrix}$$

Richardson:

$$P\mathbf{x}^{k+1} = P\mathbf{x}^k + \omega(\mathbf{b} - A\bar{\mathbf{x}}^k)$$

$$\begin{pmatrix} F & O \\ B & \widetilde{S} \end{pmatrix} \begin{pmatrix} I & -\widetilde{F}^{-1}B^{T} \\ O & I \end{pmatrix} \begin{pmatrix} \mathbf{u}^{k+1} - \mathbf{u}^{k} \\ p^{k+1} - p^{k} \end{pmatrix} = \begin{pmatrix} \omega_{1} \\ \omega_{2} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} F & B^{T} \\ B & O \end{pmatrix} \begin{pmatrix} \mathbf{u}^{k} \\ p^{k} \end{pmatrix} - \begin{pmatrix} \mathbf{f}_{f} \\ O \end{bmatrix}$$

Paolo Crosetto

Motivations

Splitting Scheme II

Equations

$$\begin{pmatrix} F & O \\ B & \widetilde{S} \end{pmatrix} \begin{pmatrix} I & -\widetilde{F}^{-1}B^{T} \\ O & I \end{pmatrix} \begin{pmatrix} \delta \mathbf{u}^{k+1} \\ \delta p^{k+1} \end{pmatrix} = \begin{pmatrix} 1 \\ \omega_{2} \end{pmatrix} \begin{pmatrix} \mathbf{r}_{1}^{k} \\ \mathbf{r}_{2}^{k} \end{pmatrix}$$

CFD Software Nozzle FDA Benchmark

with the Schur complement $S = BF^{-1}B^{T}$.

$$\begin{array}{ccc} \text{Orthomin} & \text{SIMPLE} \\ [\text{Houseaux \& al. 2011}] & [\text{Klaij, Vuik 2013}] \\ \widetilde{F} = M^{-1} (\frac{\alpha}{\delta t} + \frac{1}{\tau_1})^{-1}; \widetilde{F} = F & \widetilde{F} = \text{diag}(F) \\ \widetilde{S} = BB^T M (\frac{\alpha}{\delta t} + \frac{1}{\tau_1}) & \widetilde{S} = BB^T \text{diag}(F)^{-1} \\ \omega_2 = \frac{< \mathbf{r}_{c}^* S S^{-1} \mathbf{r}_{2}^* |}{\|S \widetilde{S}^{-1} \mathbf{r}_{2}^*\|} & \omega_2 = 1 \end{array}$$

Non splitting

Preconditioned Krylov:

$$\widetilde{L}^{-1}A\mathbf{x} = \widetilde{L}^{-1}\mathbf{b}$$

The \tilde{L} or $\tilde{L}\tilde{U}$ shown in the previous slide can be efficiently used for preconditioning a Krylov method (e.g. GMRES) on the monolithic system

Paolo Crosetto

Fluid-Structure Interaction

Example Codes Ported on JUQUEEN

Name	Space discr.	Preconditioner	Preconditioner Linear Sol.	
Alya	FEM	Chorin, Yosida	Orthomin, Richardson	Fortran
HiFLOW3	FEM	ILU	GMRES	C++
OpenFOAM	FVM	SIMPLE (PISO, PIMPLE)	Richardson	C++
LifeV	FEM	PCD, SIMPLE, Yosida	GMRES	C++
Dolfin	FEM	PCD	Richardson	C++

Profiling 2 Solvers (Scalasca)

 \approx 916K tetrahedra, on 512 cores (using 16 MPI processes per node).

HiFLOW3 (ILU) with Dr. Staffan Ronnas

	s. (sum)	visits
Preconditioner computation	15.5	4
Preconditioner application	45.5	1896
Dot product in GMRES	83.3	449'220 ¹

Tolerances: 10⁻¹⁰ for GMRES and 10⁻⁶ for Newton

- Lot of time wasted in the GMRES dot products!! (in particular in the call to MPI_AllReduce)
- ILU preconditioner for the monolithic system: expensive to build and to apply

Alya (Orthomin) wit Dr. Herbert Owen

	s. (sum)	visits
momentum ²	0.08	3 (8 iterations)
pressure schur ³	0.28	3 (11 iterations)
momentum ⁴	0.35	3 (70 iterations)

Tolerances: 10⁻⁹ for the linear solvers, 0.06 for FP

- Monolithic problem split into several small problems (splitting method)
- Simple and fast preconditioners for the sub-problems.

¹474 GMRES it. per solve ²GMRES, advection ³deflated CG ⁴GMRES, computing ω₂

Why?

- GMRES algorithm: Once computed $\tilde{\mathbf{v}}_{i+1} = A\mathbf{v}_i$ orthogonalize w.r.t the Krylov space:
- projection $\mathbf{v}_{i+1} = \widetilde{\mathbf{v}}_{i+1} \sum_{j=0}^{j=i} < \widetilde{\mathbf{v}}_{i+1}, \mathbf{v}_j > \mathbf{v}_j$
- if *n* is the number of iterations, this means $\frac{n^2}{2}$ scalar products
- for CG (or MINRES) the scalar products < v
 _i, v_j > magically disappear for j < i − 1 (three terms recursion formula!!), so that the number of products per iteration is 3, independent of *n*.
- Monolithic+ILU: ^{474²}/₂ = 112330 "big" scalar products, versus
- Orthomin: we have $\frac{8^2}{2} + \frac{70^2}{2} + 11 \cdot 3 = 2515$ "small" scalar products

Viable solutions?

- Change preconditioner
- Use the "restarted" version
- Improve the scalar product performance

Motivations

Table of contents

CFD Solvers Benchmarking

Motivations Equations CFD Software Nozzle FDA Benchmark Profiling

OpenFOAM

Motivations Fluid–Structure Interaction Motivation Problem Formulation Preconditioners

Fluid-Structure Interaction

Motivations

OpenFOAM: Industrial Gas Turbines

May 8, 2013

Paolo Crosetto

Motivations

Simulations

- goal: understanding thermo–acoustic instabilities in industrial Siemens gas turbines.
- Model: compressible Navier–Stokes coupled with heat equation and turbulence models.
- Solver: PIMPLE, an implicit variant of the PISO algorithm.
- Mesh: 22'422'878 points:

Fluid-Structure Interaction

Motivation

Problem Formulation

Preconditioners

Table of contents

CFD Solvers Benchmarking Motivations Equations CFD Software Nozzle FDA Benchmark Profiling OpenFOAM Motivations

Fluid–Structure Interaction

Motivation Problem Formulation Preconditioners

Fluid-Structure Interaction

Motivation

Problem Formulation

Preconditioners

Motivations

With LHTC (P. Reymond), CMCS (A. Quarteroni, S. Deparis)

Fluid-Structure Interaction

Motivation

Problem Formulation

Preconditioners

Idea of the ALE formulation

Fluid equations in a moving domain

 $\phi_t: \widehat{\Omega} \to \Omega_t$ is the deformation map; $\mathcal{A}_t: \widehat{\Omega}_{\mathcal{A}} \to \Omega_{\mathcal{A}_t}$ is the ALE map; May 8, 2013

Fluid-Structure Interaction

Motivation

Problem Formulation

Preconditioners

FSI problem: coupling conditions

Continuity of stresses

$$\widehat{\sigma}_f \widehat{\mathbf{n}}^f + \mathbf{\Pi} \widehat{\mathbf{n}}^s = 0$$
 on $\widehat{\Gamma}$

Continuity of velocities

$$\frac{\partial \widehat{\mathbf{d}}_s}{\partial t} = \mathbf{u} \circ \mathcal{A}_t \qquad \text{on } \widehat{\Gamma}$$

Geometry adherence

$$\frac{\partial \widehat{\mathbf{d}}_s}{\partial t} = \mathbf{w} \circ \mathcal{A}_t \qquad \text{on } \widehat{\Gamma}$$

Three fields formulation

 $\begin{aligned} \mathsf{F}(\mathbf{u}_{f},\widehat{\mathbf{d}}_{f},\widehat{\mathbf{d}}_{s}) &= 0 \text{ in } \Omega_{\mathcal{A}_{f}} \\ \mathsf{S}(\mathbf{u}_{f},\widehat{\mathbf{d}}_{s}) &= 0 \text{ in } \widehat{\Omega}^{s} \\ \mathsf{G}(\widehat{\mathbf{d}}_{f},\widehat{\mathbf{d}}_{s}) &= 0 \text{ in } \widehat{\Omega}_{\mathcal{A}} \end{aligned}$

fluid problem, unknowns $\mathbf{u}_{f} = (\mathbf{u}, p)$ structure problem, unknown $\widehat{\mathbf{d}}_{s}$ geometry problem, unknown $\widehat{\mathbf{d}}_{f}$

May 8, 2013

Motivation

Problem Formulation

Block preconditioners

with S. Deparis

we have a 3 blocks matrix A defining a coupled problem. Idea:

- Gauss-Seidel approximation $P \approx A$;
- Factorization P = P_FP_SP_G (each block containing one of the three problems);
- Precondition each factor using an efficient strategy $\tilde{P} = P_{\star}(P_F)P_{\star}(P_S)P_{\star}(P_G).$

Examples:

- (AAS)³: algebraic additive Schwarz preconditioners for the three factors;
- aPCD (AAS)²: approximated PCD ([Elman, JSC, 2005]) for the fluid, AAS for the other factors (PhD work by Gwenol Grandperrin);
- aPCD (AMG)²: approximated PCD for the fluid, algebrainc multigrid for the other two blocks;

Advantages of the factorization :

- modularity;
- memory requirements and computational cost;

note: no nested iterative solutions.

CFD Solvers Benchmarking

OpenFOAM

Fluid-Structure Interaction

Motivation

LifeV

Problem Formulation

Preconditioners

- C++ finite element library
- parallel and serial versions
- distributed under LGPL

based on MPI, ParMETIS, and Trilinos

- CMCS EPFL
- Math/CS Emory
- MOX Polimi
- REO INRIA

- All processors read the same mesh
 - ParMetis partitions the mesh
- Finite elements: loop on local mesh
- Linear solver in parallel
- post-processing on hdf5 or separate ensight files

Fluid-Structure Interaction

Motivation

Problem Formulation

Preconditioners

Greenshields-Weller benchmark

BC: pressure step function at inlet Comparison between several preconditioners:

- (AAS)³
- $aPCD (AAS)^2$
- aPCD (AMG)²

Fluid-Structure Interaction

Motivation

Problem Formulation

Preconditioners

Weak scalability on Cray XE6

Results on 2 meshes, with label 1 (finer), and 2 (coarser).

h ₁ /h ₂	procs ₁ /procs ₂	dof ₁ /dof ₂
0.77	512/256 = 2	2'970'864/1'473'624=2.016

Figure : GCE — Weak scalability results on Cray XE6.

	$(AAS)^3$	$aPCD - (AAS)^2$	$aPCD - (AMG)^2$
$\frac{iter_1}{iter_2}$ (optimal \approx 1)	1.55	1.27	1.08
$\frac{prec_1}{prec_2}$ (optimal \approx 1)	1.15	1.10	1.10
<u>gmres_time₁</u> (optimal≈1)	1.19	1.17	1.15

Motivation

Problem Formulation

Preconditioners **U JÜLICH** FORSCHUNGSZENTRUM

On Blue Gene/P

Figure : GCE — Weak scalability results on BG/P.

	$(AAS)^3$	$aPCD - (AAS)^2$	$aPCD - (AMG)^2$
$\frac{iter_1}{iter_2}$ (optimal \approx 1)	1.47	1.22	1.07
$\frac{prec_1}{prec_2}$ (optimal \approx 1)	1.22	1.06	1.06
<u>gmres_time₁</u> (optimal≈1)	1.18	1.08	1.05

+ Best weak scalability obtained with the $aPCD - (AMG)^2$;