

GROMEX FMM for Realistic Biomolecular Simulations on the Exercise Automatic Petascale Multi-Petascale

May 8, 2013 | I. Kabadshow, A. Beckmann, H. Dachsel | 1st Daresbury–Jülich Workshop

Long Range Interactions

Member of the Helmholtz Association

Molecular Dynamics

Plasma Physics

Astrophysics

May 8, 2013

1st Daresbury–Jülich Workshop

JULICH FORSCHUNGSZENTRUM

May 8, 2013

The Fast Multipole Method

There's no such thing as a free lunch

The Fast Multipole Method

Bane and Boon

Bane

- Newly introduced parameters d, ws, p need to be tuned.
- Reliable optimization scheme is essential for speedup.

Boon

- Computation time $t(\epsilon)$ can be a function of requested precision.
- Tremendous speedup possible for any requested precision.

FMM: Current Fortran Version

Generic Features

- Automatic tuning of FMM parameters to ensure user-requested energy accuracy Δ*E_r*
- Automatic runtime optimization
- Works with clustered and homogen particle distributions
- Works with open, 1D, 2D and 3D periodic boundary conditions
- Low cross-over point with direct summation (4000 particles)
- Allows different precisions $\Delta E_r = 10^{-1} \dots 10^{-30}$

mholtz	
F	
the	
of	
Member	

Association

May 8, 2013

1st Daresbury–Jülich Workshop

	xyz d p Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 F Φ
Enhano	ed FMM Workflow
$\begin{array}{c} xyz \\ q \\ \Delta E \end{array}$	Stage I \overline{d} Pass 5 $\overline{E_{\rm NF}}$ Stage II p Pass 1Pass 2Pass 3Pass 4 \overline{F} \overline{p} $$

Precision Scaling

Member of the Helmholtz Association

Three-Trillion Particles @ BGP

System Characteristics

- 3.011.561.968.121 particles
- 73728 nodes (VN mode, 294912 cores)

Results

- 3812s runtime, unsorted data (2755 particles/second/core)
- 715s runtime, presorted data (14687 particles/second/core)

May 8, 2013

Member of the Helmholtz Association

1st Daresbury–Jülich Workshop

Slide 15

ScaFaCoS Benchmarks

DFG Priority Programme (SPP 1648)

Software for Exascale Computing (SPPEXA)

- entering era of massive parallelism (> 10⁷ processing units)
- urgent need for fundamental reseach on HPC software
- reconnect fields of computer science with CSE and HPC
- demands close cooperation and co-design
- service-driven collaborations not permitted
- (3+3) year funding period

Prediction

- exascale system expected 2018 (\approx 10¹⁸ FLOPS)
- racks without brains strategy will not suffice

DFG Priority Programme

Software for Exascale Computing

EXA-DUNE

Flexible PDE Solvers, Numerical Methods, and Applications

DASH

Hierarchical Arrays for Efficient and Productive Data-Intensive Exascale Computing

TERRA-NEO

Integrated Co-Design of an Exa-Scale Earth Mantle Modeling Framework

EXASTEEL

Bridging Scales for Multiphase Steels

ExaStencils

Advanced Stencil-Code Engineering

EXAHD

An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond

ExaFSA

Exascale Simulation of Fluid-Structure-Acoustics Interactions

Slide 32

DFG Priority Programme

Software for Exascale Computing

EXA??^{*} A fast and fault tolerant microkernel-based system for exascale computing ESSEX Equipping Sparse Solvers for Exascale **EXASOLVERS** Extreme scale solvers for coupled problems EXAMAG Exascale simulations of the evolution of the universe including magnetic fields GROMEX Unified Long-range Electrostatics and Dynamic Protonation for Realistic Biomolecular Simulations on the Exascale CATWALK A Quick Development Path for Performance Models

May 8, 2013

Member of the Helmholtz Association

1st Daresbury–Jülich Workshop

GROMEX Toolbox Flexible exascale solver for long-range interactions

New Algorithmic Features

Dynamic Protonation, (Material provided by C. Kutzner, MPI Göttingen)

1st Daresbury–Jülich Workshop

May 8, 2013

Member of the Helmholtz Association

Slide 36

