

Task-farming parallelism in ChemShell

Tom Keal STFC Daresbury Laboratory

8 May 2013

QM/MM modelling

ChemShell combines high-level quantum mechanical calculations for reactive region with classical force fields for environment

Materials

QM/MM calculations

- User controls ChemShell using Tcl commands
- · ChemShell modules written in C/Fortran
- External programs called to obtain energy & gradient
- · ChemShell forms combined QM/MM gradient

ChemShell in parallel

ChemShell can run in parallel using MPI

Takes advantage of parallel external programs

- e.g. parallel energy/gradient evaluation in GAMESS-UK However, this approach does not scale well to large numbers of processors

Typical scaling behaviour

Single-point GAMESS-UK timings (57 atom silicate cluster, TZVP)

Number of processors

Task-farming parallelism

- Aim is to parallelise ChemShell algorithms as well
 - e.g. parallel Hessian evaluation, optimisations, etc.
- Task-farming approach: divide up processors into workgroups working independently on tasks

Task-farming parallelism

Workgroups are essentially independent

- Separate outputs, working directories

All lower-level parallelism (e.g. external calculations) occurs within a single workgroup.

- GAMESS-UK, GULP, etc. modified to work within workgroups
- MPI communicator split by ChemShell and passed to external program

All workgroups are controlled via a single Tcl input script

- Tcl commands to allow workgroup-specific tasks, synchronise workgroups, share data, etc.

Example: finite-difference Hessian

Single-point GAMESS-UK timings (57 atom silicate cluster, TZVP)

Number of processors

•

٠

Example: finite difference Hessian

Performance can be improved by dividing up the set of 1024 processors into workgroups:

Workgroups	Procs / workgroup	Time / s	Speed-up
1	1024	52762	
64	16	7812	6.8

Optimal number of workgroups depends on system size / total processor count / algorithm

Example 2: nudged elastic band method

Optimising reaction paths: finds the minimum energy path

- Multiple images, connected by spring forces.
- Climbing image to find transition state
- Image E/g evaluations are independent, so can be parallelised

DL-FIND

- An open-source geometry optimisation library
- · Interface to ChemShell for QM/MM optimisations
- NEB routines implemented in DL-FIND

J. Kästner, J.M. Carr, T.W. Keal, W. Thiel, A. Wander, P. Sherwood, J. Phys. Chem. A, 113, 11856, (2009)

Parallel NEB in DL-FIND

ChemShell/DL-FIND parallel interface implemented

- Pass the relevant workgroup information

Each workgroup runs DL-FIND

- Images allocated according to workgroup ID
- Images remain with same workgroup throughout calculation (benefit from restart information)
- Energies/gradients shared between workgroups at the end of each cycle

Parallel NEB timings

- Test system: hydrogen interchange on Al-doped ZnO (see later)
 - 3207-atom QM/MM cluster (32 QM atoms, PVDZ)
- Number of workgroups is limited by number of NEB images
 - Test system: 10 images (2 fixed)
- Single point calculations:

٠

٠

٠

Parallel NEB timings

- **Test over 50 cycles of NEB**
- Again divide up set of 1024 processors into workgroups:

Workgroups	Procs / workgroup	Time / s	Speed-up vs 1024	Speed-up vs 256
1	1024	26404		
1	256	23536		
2	512	14673	1.8	1.6
4	256	7089	3.7	3.3
8	128	3110	8.5	7.6

Task-farming is essential to make use of > 256 cores

٠

٠

Hydrogen dissociation study

- Al-doped ZnO important in industrial catalysis (methanol synthesis)
 - Important to understand interaction of hydrogen with ZnO
 - Catalytically important polar oxygen-terminated surface studied
 - Active site postulated to be vacant oxygen interstitial surface site
- Embedded cluster model: 3200-atom system
 - 61 QM atoms around a VOISS centre with nearby Al impurity
 - DFT ionic pseudopotentials (e.g. Zn²⁺) associated with 63 atoms in the boundary region (cations only)
 - Polarised MM forcefield (shell model)

Exploring the potential energy surface

- DFT: B97-2 functional, TZVP basis set
- Starting point: physisorption of hydrogen molecule on surface
- Endpoint: previous studies showed dissociation is heterolytic
- NEB method used to calculate barrier for dissociation
 - First run indicated a stable intermediate, so two stage reaction
 - Two NEB runs then required: R->I and I->P

 $H_2(g) + e^-$

30.2

$\mathbf{H}^{-} + \mathbf{H}^{+} + \boldsymbol{e}^{-}$

-67.5

 $H_2(g) \rightarrow H^- + H^+$

-9.1

 H_2^-

4.5

 $H^- + H^{\bullet}$

Energies in kcal/mol

Comparison with experiment

Total activation energy of H₂ desorption = E(TS1) - E(P) - 72.1 kcal/mol

- Bowker et al: 71.7 kcal/mol
- Kunat et al: 77.9 kcal/mol
- Consistent with irreversible reaction
- Dissociated surface H's useful for further catalytic reactions over Al/ZnO (methanol synthesis)

M. Bowker, H. Houghton, K. C. Waugh, *J. Chem. Soc., Faraday Trans. 1*, **77**, 3023, (1981) M. Kunat, U. Burghaus, C. Wöll, *Phys. Chem. Chem. Phys.*, **5**, 4962, (2003)

Applicability of task-farmed ChemShell

- Only relevant to large scale calculations
- External programs generally need to be modified and linked in
 - QM codes: GAMESS-UK, DALTON, LSDALTON, FHI-AIMS
 - MM codes: GULP, DL_POLY

Works with parallel diagonalisers: PEIGS, ScaLAPACK (MPIBLACS)

Not yet compatible with Global Arrays

- Required to support NWChem
- Possible in principle?

ChemShell on BlueGene/Q

ChemShell ported successfully with GAMESS-UK and GULP

- Some modifications required (released in v3.6)
- GAMESS-UK needs optimising

FHI-AIMS also working

NWChem awaits a Global Arrays implementation on BGQ

٠

٠

٠

Outlook

- Microiterative optimisation in DL-FIND
- New embedding methods (NWChem)
- New QM/MM techniques, e.g. adaptive QM regions
- **Replacing Tcl user interface with Python**

Acknowledgements

- Paul Sherwood, Johannes Kästner
- Gargi Dutta, Alexey Sokol, Richard Catlow H₂ dissociation study
- HECTOR dCSE, EPSRC SLA, PRACE for funding

www.chemshell.org