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 Research
– Molecular- / Brownian dynamics
– Mesoscopic hydrodynamics
– Ab initio quantum chemistry
– Long range interactions
– Parallel algorithms
– Load balancing

 Activities / Support
– IBISCO (Univ. Darmstadt)
– OCCAM (Univ. Salerno)
– Turbomole
– Columbus 

 Projects
– ScaFaCoS (BMBF)
– GASPI (BMBF)
– 3d-Transport (BMBF)
– Mont-Blanc (FP7)
– EESI / EESI-2 (FP7)
– ESMI (FP7)

 Simulation Laboratory Molecular Systems
 (HPC for Soft Matter and Materials Science)

 Cooperation
– Ruhr-University Bochum
– CECAM

 Teaching
– University for Applied Sciences 

Aachen/Jülich
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 Simulation Laboratory Molecular Systems
 (HPC for Soft Matter and Materials Science)

 Group
– 3 senior scientists
– 2 scienific programmer
– 1 PhD student
– 3 master students

– Godehard Sutmann

– Viorel Chihai

– Thomas Müller

– Rene Halver

– Annika Hagemeier

– Maya Kletzin

– Rebecca Swaton

– Annika Simon
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 Simulation Laboratory Molecular Systems
 (Soft Matter + Quantum Chemistry)
• Research and Development

- Molecular Dynamics, Monte Carlo and stochastic dynamical methods 
- Parallel mesoscopic hydrodynamics (MP2C)
- Libraries for generic components, e.g. integrators, long range interactions
- Mathematical methods, e.g. multigrid (wavelets)
- Load-balancing methods
- Code development on various architectures (CPU, GPU)
- Parallel algorithms for specific methods
- Parallel ab initio methods (Turbomole, Columbus)

• Support in scientific computing

- Support for specific problems (methods, algorithms)
- Provision of parallel programs and single components for simulation and
  data analysis

• Administration

- Organisation of schools and workshops (CECAM)
- Third party funding acquisition
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Outline

 Introduction

 Multi-Particle Collision Dynamics

 Parallelization

 Some applications
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Applications: Interactions of Nanoparticles

G.Grest et al., PRE 79, 050501 (2009)

Large scale simulation of coated silica 
nanoparticles
(7 Mio. Atoms, 1 ns ~ 140 h on 1024 procs. 

At distances beyond contact, particles behave
like Brownian particles, described by 
Stokes-Einstein in a hydrodynamic medium

Replace explicit waters by effective hydrodynamic media
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Hydrodynamic Interactions

• For small Reynolds numbers (velocities) the 
NS equations may be linearized

• The velocity field is then given by a “response” 
function to the external perturbation

• The Green's function is the Oseen tensor (not positive definite)

• Extension for finite size particles (positive definite)

long ranged
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Hydrodynamic Interactions

• This description is a simplified view and only valid for dilute 
solutions

• No thermodynamic fluctuations included

• Hydrodynamic interactions are not pairwise additive

• Leads to involved calculations if one wants to do it correctly

• More rigorous calculations would solve Navier-Stokes equations 
with solvated particles 
 problem of dynamic boundary conditions at particle positions
 problem of discretisation of compute domain at particle 

positions
 limitation to only a few particles

• Approximate treatment within Stokesian Dynamics
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Discrete schemes for hydrodynamics

• To facilitate treatment of hydrodynamic interactions, several 
schemes were developed

 Lattice-Boltzmann  

 Dissipative Particle Dynamics

 Smooth Particle Hydrodynamics

 Direct Simulation Monte Carlo (DSMC)

 Multi-Particle Collision Dynamics (MPC)
- Stochastic Rotation Dynamics
- MPC-variants (Collision rules)

 - thermal fluctuation
- various boundary conditions
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Multi-Particle Collision Dynamics

• Solvent particles are considered to exchange momentum 
between solvent and solute particles

 Momentum exchange occurs after collisions
 No explicit interactions (no hydrodynamic force field)
 Microscopic details of solvent collisions are not of interest
 Therefore modeled by stochastic momentum exchange

• Requirements

 Conservation of energy
 conservation of momentum
 (conservation of angular momentum)
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MPC construction of collision cells
• particles are sorted into collision cells

• to conserve Galilean invariance, cells are 
shifted by a random offset in every time step

• Equivalent to shift ALL particles by random 
offset

– Shift ALL particles by random offset
– Sort into FIXED cells
– Perform collisions
– Shift back ALL particles

In parallel implementation would induce large
Data transfer across processors
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MPC collision: random rotation 

• Perform a random rotation of relative 
velocities by

with 

• for every collision cell calculate a random
rotation axis

• add com velocity of the cell to rotated relative velocities to get 
new particle velocities after a collision
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MPC: theoretical background

• it may be shown that MPC represents a discretised description of 
linearized Navier-Stokes equations

• theoretical expressions for transport coefficients

 viscosity of the fluid 

A.Malevanets and R.Kapral, J.Chem.Phys. 110, 8605-8613 (1999)
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MPC: boundary conditions
 Boundary conditions for flow problems

( often surfaces with no-slip), e.g.
- shear conditions between plates
- Poiseuille flow
- embedded obstacles

 overlapping cells might show wrong statistics / dynamics
- e.g. one particle would have no collision
- com never on the surface

 introduce virtual particles inside wall
- takes into account momentum transfer to the wall
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MPC: boundary conditions

 Example Poiseuille flow
- boundary conditions: no-slip

Velocity profile Velocity close to the surface



May. 6, 2013          Bochum ICAMS2            Particle Based Hydrodynamics on Parallel Computers   17

MPC: boundary conditions
 Statistics for particle distribution

- particles are Poisson distributed in cells with given average number 
  according to density

 Fill overlapping volume of cells with proper no. of virtual particles to get 
correct density fluctuations
- consider real partial cell as realization of random draw
- add virtual particles according to average no. in overlap volume
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MPC: boundary conditions
 Example shear flow between plates

- boundary conditions: no-slip
- mean velocity of virtual particles in overlapping cell

Velocity profile Excess Velocity close to the surface
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Flow around cylinder – boundary conditions

 Influence on flow profile 
– Slip boundary conditions (reflection)

– No-slip boundary conditions (bounce back)

No-slip 
(bounce-back)

slip 
(reflection)

Re ~ 10
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Flow around cylinder – boundary conditions

 Influence on flow profile 
– Slip boundary conditions (reflection)

– No-slip boundary conditions (bounce back)
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MPC: thermostating the fluid

 MPC is energy and momentum conserving

 in external fields, energy is gained and one has to transfer 
the energy to a reservoir

 thermostating takes into account a proper temperature 
distribution 

 however, there are differences in local and global 
temperature corrections

 statistical properties (thermal fluctuations) might be 
influenced to produce fictitious results
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MPC: thermostating the fluid

 Velocity distribution

 Kinetic energy distribution (+ momentum conservation)

 Correction of velocities

 Probability for a velocity change to conserve statistics 

E
k
' from P(E

k
) distribution
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Random Numbers for the Thermostat

 Acceptance-rejection method

 Rejection function

normalized (to maximum)
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MPC: thermostating the fluid

 Example: Shear flow

Comparison between theoretical prediction and simulation result for 
N

c
 = 3, 5, 10, ∞ 

Comparison 
with strict
thermostat
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MPC: thermostating the fluid

 Example: Poiseuille flow

Velocity profile
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Dynamic Structure Factor

  MPC with constant energy vs constant temperature
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Dynamic Structure Factor

  MPC partially thermostated
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Solute/Solvent interactions: coupling to MD

• Every n MD steps sort solutes together with solvent particles into 
collision cells

• Calculate common com-velocity

and perform a rotation in velocity space for both solvent and 
solute particles around the same random axis

• Results in a stochastic momentum change of the solutes while 
conserving the overall momentum and kinetic energy in the 
system

• Inclusion of hydrodynamic modes into solute dynamics
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Domain Decomposition

 MD and MPC methods are local – no  long range interactions (not yet)

• Every processor is responsible for a certain region
Domain Decomposition

• In 3 dimensions every domain has 26 neighbors (if decomposition is 
not time dependent – load balanced)

• Communication parts
 MPC

 Collision cell properties
 Import/Export 

of particles 
due to diffusion
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• Implementation into MP2C (not designed for special hardware platform)

• Running with MPI on several machines (hybrid in progress) 

• Target platforms for present benchmark:

  JUROPA                            JUGENE                         JUQUEEN

Hardware

2208 / 1080 compute nodes
2 PEs (Intel Nehalem quad core)
17664 / 8640 cores total
207 / 101 Tflop/s peak, 

79 TByte main memory, 
24 GByte per node

73720 compute nodes
294912 compute cores
1 PetaFlop / Peak
825.5 TeraFlop / Linpack

147 Tbyte main memory
2 GByte per node

28672 compute nodes
458752 compute cores
5.9 PetaFlop / Peak
4.141 PetaFlop / Linpack

448 Tbyte main memory
16 GByte per node

No. 5 world  No. 1 Europe
(Nov. 2012)
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MPC: Weak scaling BG/P

• Keep number of particles/processor constant
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MPC: Weak scaling BQ/Q

• Keep number of particles/processor constant
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Strong scaling on JUROPA

 Keep total problem size constant
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Strong scaling JUGENE

 Keep total problem size constant
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MD: Strong scaling

• Keep total number of particles constant

• Benchmark system: 3000 Polymer chains 
                                 with 250 monomers
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Expl: Semi-diluted Polymer solutions under  Shear

 Problem with polymers is the increasing relaxation time with 
number of monomers (O(N2))

 Simplifications through coarse grain potentials and
coarse grain solvent

 Interesting phenomena, 
like shear thinning, occur from c/c* > 1
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Expl: Semi-diluted Polymer solutions under  Shear

 Shear thinning for large shear rates
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Flow in stochastic geometries

 High Temperature – Polymer Electrolyte Fuel Cell (HT-PEFC)

Bipolar plate Bipolar plateMembrane

GDL
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Flow in stochastic geometries

 Effective path length: tortuosity

– Fick's law

– Diffusion in porous media

   porosity

   gas saturation

   tortuosity

GDL
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Flow in stochastic geometries

 Flow in Gas Diffusion Layer (GDL) of fuel cells

Tortuosity:
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Thank you for your attention !
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