

Biological neuronal network simulation code for the brain scale

January 11, 2012 | Markus Diesmann

Institute of Neuroscience and Medicine (INM-6) Computational and Systems Neuroscience Institute for Advanced Simulation (IAS-6) Theoretical Neuroscience

Blue Gene Active Storage Workshop

Outline

- fundamental neuronal interactions
- example of model construction: local cortical network
- critique of local network models
- necessity and challenges of brain-scale models
- scalability of neuronal network simulations
- state-of-the-art and comparison of K and JUGENE
- i/o challenges for simulations at the brain-scale

Fundamental interactions

- current injection into pre-synaptic neuron causes excursions of membrane potential
- supra-threshold value causes spike transmitted to post-synaptic neuron
- post-synaptic neuron responds with small excursion of potential after delay
- inhibitory neurons (20%) cause negative excursion

- each neuron receives input from 10,000 other neurons
- causing large fluctuations of membrane potential
- emission rate of 1 to 10 spikes per second

Fundamental interactions

- connectivity c = 0.1
- synapses per neuron = 10⁴
- \Rightarrow minimal network size = 10⁵

network $N = 10^5$

- considered elementary unit
- corresponding to 1 mm³

 \Rightarrow possible

total number of synapses = $(cN) \cdot N$

Morrison, Mehring, Geisel, Aertsen, Diesmann (2005) *Neural Computation* 17:1776–1801 Morrison, Straube, Plesser, Diesmann (2007) *Neural Computation* 19:47–79

January 11, 2012

Minimal layered cortical network model

- 1 mm³
- 1 billion synapses, 100,000 neurons
- 2 populations of neurons (E,I) per layer
- E and I identical neuronal dynamics
- Iaterally homogeneous connectivity
- layer- and type-specific C_{ii}^{xy}

Available data sets

in vivo anatomy

in vitro physiology

(Thomson et al. 2002)

Consistency of connection probabilities

- inconsistent averages
- consistent architectural relations

Lateral connectivity

Target specificity

Mitglied in der Helmholtz-Gemeinschaft

Convergence and divergence

- dominated by within-layer connections
 - e → e divergence reflects
 "standard" loop
 - $e \rightarrow i$ divergence reflects target-specific feedback

Local cortical microcircuit

- 10⁵ neurons and 10⁹ synapses
- excitatory (80%) and inhibitory population (20%) of neurons in each layer

taking into account layer and neuron-type specific connectivity is sufficient to reproduce

- asynchronous-irregular spiking of neurons
- correct distribution of spike rates across layers

Potjans TC & Diesmann M (2012) The cell-type specific connectivity of the local cortical network explains prominent features of neuronal activity. *Cerebral Cortex* 10.1093/cercor/bhs358

Response to transient inputs

Response to transient inputs

А

\$

$$\begin{array}{c} 12/3e \\ 5 Hz \\ 14e \\ 15e \\ 16e \\ 10 Hz \\ 10 Hz$$

В

-

■ T = +0.4

Hypothesis on cortical flow of activity

building block for further studies: Wagatsuma N, Potjans TC, Diesmann M and Fukai T (2011) Layer-dependent attentional processing by top-down signals in a visual d cortical microcircuit. *Front Comput Neurosci* 5:31

⇒

The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model

Tobias C. Potjans^{1,2,3↓} and Markus Diesmann^{1,2,4,5}

Author Affiliations

¹Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center Juelich, Juelich, Germany

²Brain and Neural Systems Team, RIKEN Computational Science Research Program, Wako-shi, Japan

³Faculty of Biology III, Albert-Ludwigs-University Freiburg, Freiburg, Germany

⁴Medical Faculty, RWTH Aachen University, Aachen, Germany

⁵RIKEN Brain Science Institute, Wako-shi, Japan

This Article

Cereb. Cortex (2012) doi: 10.1093/cercor/bhs358 First published online: December 2, 2012

This article is Open Access

» Abstract Free

Full Text (HTML) Free

Full Text (PDF) Free

Classifications

Article

Services

Alert me when cited

Cortical flow of activity

About Submit Regist	S Journals • Events • Jobs • People • Videos • er Login	News - Blogs - Search
Info Home	Share O Like O F in Image: Share Altmetric O 530 Views Front. Comput. Neurosci., 08 July 2011 doi: 10.3389/fncom.2011.00031 G <td>Article Info Abstract</td>	Article Info Abstract
About Editorial Board Archive Research Topics	Layer-dependent attentional processing by top-down signals in a visual cortical microcircuit model Nobuhiko Wagatsuma ^{1,2*} , Tobias C. Potjans ^{3,4,5} , Markus Diesmann ^{1,3,4} and Tomoki Fukai ^{1,4,6} RIKEN Brain Science Institute, Wako, Japan Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center Juelich, Juelich, Germany	PDF Export Citation XML
New Some Authors Review Guidelines Subscribe to Alerts		The Authors in
Search Article Type		Google Google Scholar PubMed
All Publication Date	 brain and Neural Systems Team, RIKEN Computational Science Research Program, Wako, Japan Faculty of Biology III, Albert-Ludwigs-University Freiburg, Freiburg, Germany Core Research of Evolutional Science and Technology. Japan Science and Technology 	

Mitglied in der Helmholtz-Gemeinschaft

Brain-scale connectivity

Local Cortical Network Connections:

- ✓ local connections
- \checkmark realistic synaptic modeling
- ➤a major part of synapses missing
- input dependent local network dynamics

Brain-scale Connections: vall connections

- >bottom-up and
- top-down approach meet on this level

Necessity of brain-scale models

- only 50% of incoming synapses of a neuron from local source
 - underconstrained model limits predictive power
 - only brain-scale model represents majority of inputs
 - self-sustained activity
- brain functions are distributed over many areas
 - brain-scale models required to close functional circuits
- requires work on software technology

Architecture of the human cortex

a network of networks with at least three levels of organization:

- connectivity of local microcircuit
- within-area connectivity with space constant
- Iong-range connections between areas

Mitglied in der Helmholtz-Gemeinschaft

local circuit 10⁵ neurons

brain area 10⁷ neurons

Meso- and macro-scale measures

Optical imaging

brain-scale networks provide the substrate for

mesoscopic measures

- local field potential (LFP)
- voltage sensitive dyes (VSD)

and macroscopic measures

- EEG, MEG
- fMRI resting state networks

connecting biophysical modeling to the field of neuroimaging

ied in der Helmholtz-Gemeinschaft

Collaboration

0	About Us - NEST - Mozilla Firefox						
ile <u>E</u> dit <u>V</u> iew Hi	story Bookmarks Tools Help						
· · · C ·	🛛 🍙 📵 http://www.nest-initiative.org/index.php/About_Us 🌚 😪 V Google						
Most Visited 🗸 🌘	Cetting Started ThinkPady INESTY Officey IRIKENY Tokyo-Travely Insurancey providery Inardwarey Dythony Conferencesy Djournalsy						
About Us - NEST	+						
	🚊 Log in / create account						
nes							
1160							
init	lative						
HEET Initiative	About Up						
About us	About Us						
 Members 	The Neural Simulation Technology (NEST) Initiative was founded in 2001 with the goal to collaborate in the development of simulation methods for biologically realistic neuronal networks.						
Activities	The main goals of the collaboration are:						
 Publications 	1. Development of new simulation methods and algorithms.						
 Contact 	Development of new analysis and visualization tools.						
NEST Software	Collection of information and resources related to neural simulations.						
About NEST Download	These goals are expressed in the joint development of a simulation system for biologically realistic neuronal networks. It is an explicit goal of the NEST Initiative to share its results with the scientific community. This includes						
 Documentation 	 publication of results in appropriate scientific journals, and 						
 Features Mailinglists 	 releases of simulation tools to the scientific community (for non-commercial use). 						
 Reporting bugs 	The collaboration is based on the idea of mutual benefit, with each collaborating party having the same rights (and duties) with respect to the other parties of the collaboration.						
Authors	What we do						
	The NEST Simulator						
	The NEST initiative develops the NEST Simulator and releases it to the scientific community under the NEST License.						
	NEST 2.0 is available for download free of charge. To find out if NEST is suitable for your research needs, please see the list of features.						
	General neuronal network modeling methodology						
	The NEST initiative promotes the development of methods for simulation studies of neuronal networks. We are pleased to announce the publication of						
	Nordlie E, Gewaltig M-O, Plesser HE (2009). Towards reproducible descriptions of neuronal network models. PLoS Comput Biol 5(8):e1000456 g.						
	The NEST initiative would like to encourage scientists in the field to follow the Good model description practice suggested in this paper, and to adopt the Model Description Tables proposed in it. You may developed the LaTeX source code for one of the Lables have						

- collaboration of several labs (since 2001)
- teaching in international advanced courses
 - Okinawa Computational Neuroscience Course OCNC
 - Advanced Course in Computational Neuroscience ACCN, Europe

Major goals:

systematically publish new simulation technology

produce public releases under GPL

Scale-up to networks of 10⁹ neurons

scale-up on K guided by 3 milestones

port NEST software to K
 scale of 10⁸ neurons
 towards full brain
 dg
 Sep 2011
 NEST 2.1
 NEST 2.2
 now

(*2g = 2nd generation simulation kernel)

scale 10⁸ relevant:

- larger than largest area (V1)
- enable visual cortex model respecting relative sizes
- larger networks: long delays, sparse macroscopic connectivity

Characteristics of brain simulations

- memory overhead increases with cores
- memory not simulation time limits network size
- intention to use full memory resources: maximum-filling scaling
- analysis based on mathematical model of memory consumption:
 - Kunkel S, Potjans TC, Eppler JM, Plesser HE, Morrison A and Diesmann M (2012) Meeting the memory challenges of brain-scale network simulation. *Front Neuroinform* 5:35
 - at different scales different components of the software dominate memory consumption

Memory layout of 3g and 4g kernel

3g memory layout

accounts for sparseness in neuronal and connection data structures

4g memory layout

- data structures account for heterogeneity of synaptic dynamics
- for > 10,000 cores, neurons with few local targets cause severe overhead
- novel adaptive data structure copes with short target lists
- not compromising on generality

How to measure scalability

Strong scaling

Weak scaling

- faster element update (decreased t_n) leads to worse scaling as communication dominates runtime already at fewer cores
- or the other way round: a better scaling can be achieved by using an algorithm which performs a slower element update (e.g. integration with smaller step size)

Mitglied in der Helmholtz-Gemeinschaft

Limited memory resources

- network just fits on \widehat{M} cores
- improving memory consumption
- larger network on \widehat{M} cores

extreme case: same network can be simulated faster on fewer cores (dots

indicate equally sized networks)

- communication dominates at larger number of cores
- better scaling

Maximum filling scaling of 3g on K

- neuroscientist interested in maximum use of resources
- hold memory close to maximum available on node (16 GB)
- neurons per core drop
- simulation time increases due to increased communication

Performance of 3g and 4g on Jugene and K

- end of dashed lines indicate machine size, the potential of K
- JUGENE largest number of MPI jobs tested 65,536 = 262,144 cores
- 74% of MPI jobs required for full K tested
- K largest number of MPI jobs tested 24,576 = 196,608 cores
- wall clock time 1 biological second of the largest 4g simulation on K: 1520s = 25min

Mitglied in der Helmholtz-Gemeinschaft

Publication on technology of 3g kernel

frontier	S Journals - Events - Jobs - People - Videos -	• News • Blogs •
About Submit Regist	ter Login	Search
	Tontiers And	S/
Info	ORIGINAL RESEARCH ARTICLE	Article Info
Home	Share 0 Like 0 Comment 0 f in 9 Q+1 29 Share Altmetric 0 285 Views	Abstract
About	Front. Neuroinform., 02 November 2012 doi: 10.3389/fninf.2012.00026	Full Text
Editorial Board	Supercomputers ready for use as	PDF
Archive	discovery machines for neuroscience	Export Citation
Research Topics	discovery machines for neuroscience	XML
View Some Authors	Moritz Helias ^{1,2} *, Susanne Kunkel ^{1,3,4} , Gen Masumoto ⁵ , Jun	View Article Impact
Review Guidelines	Igarashi°, Jochen Martin Eppler', Shin Ishii', Tomoki Fukai°,	The Authors in
Subscribe to Alerts		Frontiers
Search	Jülich Research Centre, Jülich, Germany	Google
Q	 RIKEN Brain Science Institute, Wako, Japan Simulation Inheretery Neuroscience - Reportein Englity for Simulation and Database 	Google Scholar
Article Type	Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Jülich	PubMed
All	Research Centre, Jülich, Germany ⁴ Bernstein Center Freiburg, Albert-Ludwig University of Freiburg, Freiburg, Germany	Related Article
Publication Date	⁵ High-Performance Computing Team, RIKEN Computational Science Research Program, Kobe,	in Frontiers

Visualization

• Virtual Reality Group, Torsten Kuhlen, RWTH Aachen University

January 11, 2012

Mitglied in der Helmholtz-Gemeinschaft

BGAS Workshop

I/O characteristics of NEST

- currently no state-of-the-art simulator can write out data!
- we need to write small chunks of data continuously
- all processes write the data generated locally
- 10⁸ neurons (each spiking at ~1/s) means 1.49 GB per simulated s
- recording membrane potentials once every 10ms means 149 GB
- recording synaptic weights multiplies by ~10⁴
- in practice we only need data by a subset of neurons/synapses!

Our planned use of BGAS

Software challenges to use BGAS

- Currently, data analysis is carried out after the simulation is over
- To use BGAS, we need to intertwine simulation and analysis
- Data might need to be collected before writing to minimize the amount of files created on i/o nodes
- We have a prototype implementation for parallel i/o based on SIONlib (with group of Dirk Pleiter)
- we require a high degree of portability; success of NEST is based on the fact that it runs on laptops and supercomputers

Complexity of software development

 complexity requires continuous adaptation of new technologies

EXPERTISE

Supercomputers User Support Simulation Laboratories SL Biology SL Plasma Physics SL Molecular Systems SL Climate Science

SL Fluids and Solids Engineering

Simulation Laboratory Neuroscience -Bernstein Facility Simulation and Database Technology

The Simulation Lab Neuroscience is currently being established as a new Simulation Lab at the Forschungszentrum Jülich, funded by the Helmholtz Association and the Jülich Aachen Research Alliance (JARA). It is expected to be operational by January 1st, 2013.

As the "Bernstein Facility Simulation and Database Technology (BFSD)", the new facility contributes its expertise in simulation and database technology to the National Bernstein Network Computational Neuroscience.

Goals and services:

bfsd

Summary

- model of local cortical network explains basic dynamical properties
- remains underconstrained because only 50% of connections are local
- functional loops only closed at the brain-scale
- 10⁸ milestone achievable with 3g kernel (milestone 2)
- 10⁹ barrier in sight with 4g kernel (milestone 3)
- no compromise on generality
- short run times enable use of K as discovery machine for neuroscience
- next steps:
 - deliver 4g kernel to our partners
 - concepts for exa-scale machines

Acknowledgements

Moritz Helias

Susanne Kunkel

Jochen Martin Eppler

Hans Ekkehard Plesser

Marc-Oliver Gewaltig

Abigail Morrison

Shin Ishii

Tomoki Fukai

Jun Igarashi

Makoto Taiji

Gen Masumoto

Yousuke Ohno

K, JUGENE, JUQUEEN

	Κ	JUGENE	JUQUEEN
CPU clock speed	2.0 GHz	850 MHz	1.6 GHz
Cores / compute node	8	4	16
Hardware threads / core	1	1	4
Memory / core	2 GB	500 MB	1 GB
Total nodes	88,128 (864 racks)	73,728 (72 racks)	24,576 (24 racks)
Total cores	705,024	294,912	393,216
Total hardware threads	705,024	294,912	1,572,864
Total memory	1,377 TB	144 TB	384 TB

How to measure scalability

Simple model of runtime

$$T = N_M t_n + \log_2(M) t_s + (M-1) t_w m$$

update of MPI Allgather
local neurons

$$N_M = \frac{N}{M}$$
 number of neurons per MPI process

- *M* number of MPI processes
- $t_{\rm s}$ start-up time
- $t_{\rm w}$ time to transfer 1 Byte
- *m* message size in Bytes
- $t_{\rm n}$ time needed to update one neuron

Mitglied in der Helmholtz-Gemeinschaft