

Blue Gene Active Storage for High Performance BG/Q I/O and Scalable Data-centric Analytics

Blake G. Fitch

bgf@us.ibm.com

- Blake G. Fitch
- Robert S. Germain
- Michele Franceschini
- Todd Takken
- Bernard Metzler
- Heiko J. Schick
- Peter Morjan
- Ben Krill
- T.J. Chris Ward
- Thomas Huth
- Michael Deindl
- Michael Kaufmann
- and many other part time associates and contributors.

DOE Extreme Scale: Conventional Storage Planning Guidelines

http://www.nersc.gov/assets/HPC-Requirements-for-Science/HPSSExtremeScaleFINALpublic.pdf

HPC I/O Requirements – 60 TB/s – Drive

Systems	2009	2018	Difference Today & 2018	
System peak	2 Pflop/s	1 Eflop/s	O(1000)	
Power	6 MW	~20 MW (goal)		
System memory	0.3 PB	32 - 64 PB	O(100)	
Node performance	125 GF	1.2 or 15TF	O(10) – O(100)	
Node memory BW	25 GB/s	2 - 4TB/s	O(100)	
Node concurrency	12	O(1k) or O(10k)	0(100) – 0(1000)	
Total Node Interconnect BW	3.5 GB/s	200-400GB/s (1:4 or 1:8 from memory BW)	O(100)	
System size (nodes)	18,700	O(100,000) or O(1M)	O(10) – O(100)	
Total concurrency	225,000	O(billion) + [O(10) to O(100) for latency hiding]	O(10,000)	
Storage Capacity	15 PB	500-1000 PB (>10x system memory is min)	0(10) – 0(100)	
IO Rates	0.2 TB	60 TB/s	O(100)	
MTTI	days	O(1 day)	- O(10)	

From Rick Stevens: http://www.exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Steven.pdf

- 60 TB/s bandwidth required
 - Driven by higher frequency check points due to low MTTI
 - Driven by tier 1 file system requirements
 - HPC program IO
 - Scientific analytics at exascale
- Disks:
 - ~100 MB/s per disk
 - ~600,000 disks!
 - ~600 racks???
- Flash
 - ~100 MBps write bandwidth per flash package
 - ~600,000 Flash packages
 - ~60 Flash packages per device
 - ~6 GBps bandwidth per device (e.g. PCIe 3.0 x8 Flash adaptor)
 - ~10,000 Flash devices
- Flash is already more cost effective than disk for performance (if not capacity) at the unit level and this effect is amplified by deployment requirements (power, packaging, cooling)

Conclusion: Exascale class systems will benefit from integration of a large solid state storage subsystem

6

Active Storage Concept: Scalable, Solid State Storage with BG/Q

"How to" guide:

- Remove 512 of 1024 BG/Q compute nodes in rack to make room for solid state storage
- Integrate 512 Solid State (Flash+) Storage Cards in BG/Q compute node form factor

- OFED RDMA & TCP/IP over BG/Q Torus failure resilient
- Standard middleware GPFS, DB2, MapReduce, Streams

Active Storage Target Applications

- Parallel File and Object Storage Systems
- Graph, Join, Sort, order-by, group-by, MR, aggregation
- Application specific storage interface

10GbE **FPGA PCle**

All-to-all throughput roughly

equivalent to Flash throughput

PCIe Flash Board

Flash Storage	2012 Targets
Capacity	2 TB
I/O Bandwidth	2 GB/s
IOPS	200 K

BGAS Rack Targets

Nodes	512
Storage Cap	1 PB
I/O Bandwidth	1 TB/s
Random IOPS	100 Million
Compute Power	104 TF
Network Bisect.	512 GB/s
External 10GbE	512

... scale it like BG/Q.

Cards

- IO nodes have non-volatile memory as storage and external Ethernet
- Compute nodes not required for data-centric systems but offer higher density for HPC
- Compute nodes and IO nodes likely have Blue Gene type nodes and torus network
- IO Node cluster supports "file systems" in non-volatile memory and on disk
- On-line data does may not leave IO fabric until ready for long term archive
- Manual or automated hierarchical storage manages data object migration among tiers

Torus Networks – Cost-scalable To Thousands Of Nodes

Physical Layout FPU 10. PPC-10 PPC 11 PL. IT ALC 0.00

Packaged Node

- Cost scales linearly with number of nodes
- Torus all-to-all throughput does fall rapidly for very small system sizes
- But, bisectional bandwidth continues to rise as system grows
- A hypothetical 5D Torus with 1GB/s links yields theoretical peak all-to-all bandwidth of: 1GB/s (1 link) at 32k nodes (8x8x8x8x8)
 - Above 0.5GB/s out to 1M nodes
- Mesh/Torus networks can be effective for data intensive applications where cost/bisection-bw is required

Aggregate A2A BW (GB/s)

Blue Gene Active Storage

© 2013 IBM Corporation

(a) Graph of a Local Gnutella P2P

(b) Graph of Research Co-authorship

A particularly important analytics kernel

- Random memory access pattern
 Very fine access granularity
- High load imbalance in
 - Communication and
 - Computation
- Data dependent communications patterns

Blue Gene features which helped:

- cost-scalable bisectional bandwidth
- low latency network with high messaging rates
- large system memory capacity
- low latency memory systems on individual nodes

June '12: www.graph500.org/results_june_2012

June 2012

Rank	Installation Site	Machine	Number of nodes	Number of cores	Problem scale	GTEPS
1	DOE/SC/Argonne National Laboratory	Mira/BlueGene/Q	32768	524288	38	3541.00
1	LLNL	Sequoia/Blue Gene/Q	32768	524288	38	3541.00
2	DARPA Trial Subset, IBM Development Engineering	Power 775, POWER7 8C 3.836 GHz	1024	32768	35	508.05
3	Information Technology Center, The University of Tokyo	Oakleaf-FX (Fujitsu PRIMEHPC FX 10)	4800	76800	38	358.10
4	GSIC Center, Tokyo Institute of Technology	HP Cluster Platform SL390s G7 (three Tesla cards per node)	1366	16392	35	317.09
5	Brookhaven National Laboratory	BLUE GENE/Q	1024	16384	34	294. <mark>2</mark> 9
6	DOE/SC/Argonne National Laboratory	Vesta/BlueGene/Q	1024	16384	34	292.36
7	NASA-Ames / Parallel Computing Lab, Intel Labs	Pleiades - SGI ICE-X, dual plane hypercube FDR infiniband, E5-2670 "sandybridge"	1024	16 <mark>3</mark> 84	34	270.33
8	NERSC/LBNL	XE6	4817	115600	35	254.07
9	NNSA and IBM Research, T.J. Watson	NNSA/SC Blue Gene/Q Prototype II	4096	65536	32	236.00
10	GSIC Center, Tokyo Institute of Technology	TSUBAME 2.0 (CPU only)	1366	16392	36	202.68

RedHat Linux Based Active Storage Software Stack

BGAS Full System Emulator -- BGAS on BG/Q Compute Nodes

- Leverages BG/Q Active Storage (BGAS) Environment
 - BG/Q + Flash memory,
 - Linux REHL 6.2
 - standard network interfaces (OFED RDMA, TCP/IP)
 - standard middleware (GPFS, etc)
- BGAS environment + Soft Flash Controller + Flash Emulator
 - SFC breaks the work up between device driver and FPGA logic
 - The Flash emulator manages RAM as storage with Flash access times
- Explore scalable, SoC, SCM (Flash, PCM) challenges and opportunities
 - Work with the many device queues necessary for BG/Q performance
 - Work on the software interface between network and SCM
 - RDMA direct into SCM
- Realistic BGAS development platform
 - Allows development of storage systems that deal with BGAS challenges
 - GPFS-SNC should run
 - GPFS-Perseus type declustered raid
 - Multi-job platform challenges
 - QoS requirements on the network
 - Resiliency in network, SCM, and cluster system software
- Running today: InfoSphere Streams, DB2, GPFS, Hadoop, MPI, etc...

BGAS Platform Performance – Emulated Storage Class Memory

- Software Environment
 - Linux Operating System
 - OFED RDMA on BG/Q Torus Network
 - Fraction of 16 GB DRAM used to emulate Flash storage (RamDisk) on each node
 - GPFS uses emulated Flash to create a global shared file system
- Tests
 - IOR Standard Benchmark
 - all nodes do large contiguous writes tests A2A BW internal to GPFS
 - All-to-all OFED RDMA verbs interface
 - MPI All-to-all in BG/Q product environment
 a light weight compute node kernel (CNK)
- Results
 - IOR used to benchmark GPFS
 - 512 nodes → 0.8 TB/s bandwidth to emulated storage
- Network software efficiency for all-to-all
 - BG/Q MPI on CNK: 95%
 - OFED RDMA verbs 80%
 - GPFS IOR 40% 50% (room to improve!)

Blue Gene Active Storage

© 2013 IBM Corporation

GPFS ILM abstractions:

- Storage pool a group of storage volumes (disk or tape)
- Policy rules for placing files into storage pools
- GPFS policy rules much richer than conventional HSM "how big is the file and when was it last touched"
 - Tiered storage create files on fast, reliable storage (e.g. solid state), move files as they age to slower storage, then to tape (a.k.a. HSM)
 - Differentiated storage place media files on storage with high throughput, database on storage with high IO's per second
 - Grouping keep related files together, e.g. for failure containment or project storage

- Data Intensive Supercomputing (HPC)
 - Integrate with standard BG/Q system as standard Posix I/O accelerators
 - Create/modify HPC applications to make direct use of new capabilities ex: neurosimulation
 - Low latency storage access from compute dense
 - New opportunities for out-of-core programming techniques
- Standard Middleware
 - BGAS utilized as a standard cluster with very high performance
 - Configure standard middleware such as GPFS, DB2, etc to run in BGAS environment
- New Frameworks
 - Restructured HPC applications and workflows to use new middleware to intercommunicate
 - Acceleration
 - Active File System to offload UNIX commands into BGAS
 - DB2 offload via Infosphere Federated Wrapper to offload and accelerate relational operators
 - InfoSphere Streams

Active Storage Stack Optimizes Network/Storage/NVM Data Path

- Scalable, active storage currently involves three server side state machines
 - Network (TCP/IP, OFED RDMA), Storage Server (GPFS, PIMD, etc), and Solid State Store (Flash Cntl)
- These state machines will evolve and potentially merge as to better server scalable, data-intensive applications.

- Key/value object store
 - Similar in function to Berkeley DB
 - Support for "partitioned datasets" named containers for groups of K/V records
 - Variable length key, variable length value
 - Record values maybe appended to, or accessed/updated by byte range
 - Data consistency enforced at the record level by default
- In-Memory DRAM and/or Non-volatile memory (with migration to disk supported).
- Other functions
 - Several types of interators from generic next-record to "streaming, parallel, sorted" keys
 - Sub-record projections
 - Bulk insert
 - Server controlled embedded function -- could include further push down into FPGA
- Parallel Client/Server Storage System
 - Server is a state machine is driven by OFED RDMA and Storage events
 - MPI client library wraps OFED RDMA connections to servers
- Hashed data distribution
 - Generally private hash to avoid data imbalance in servers
 - Considering allowing user data placement with a maximum allocation at each server
- Resiliency
 - Currently used for scratch storage which is serialized into files for resiliency
 - Plan to enable scratch, replication, and network raid resiliency on PDS granularity

Classic parallel IO stack to access external storage

Compute-in-storage Apps directly connect to scalable K/V storage

Compute-in-Storage: HDF5 Mapped to a Scalable Key/Value Inteface

- Storage-embedded parallel programs can use HDF5
 - Many scientific packages already use HDF5 for I/O
- HDF5 mapped scalable key/value storage (SKV)
 - client interface:
 - native key/value
 - tuple representation of records
 - MPI/IO (adio)
 - --> support for high-level APIs: HDF5
 - --> broad range of applications
- SKV provides lightweight direct access to NVM
- client-server communications use OFED RDMA
- Scalable Key/Value storage (SKV)
 - Design
 - stores key/value records in (non-volatile) memory
 - distributed parallel client-server
 - thin server core: mediate between network and storage
 - client access: RDMA only
 - Features:
 - non-blocking requests (deep queues)
 - global/local iterators
 - access to partial values (insert/retrieve/update/append)
 - tuple-based access with server side predicates and projection

From: http://www.it.uu.se/research/conf/SCSE07/material/Gropp.pdf

			_	-
-		_	_	
		_		_
_	_	_	_	_
	_		_	

Observations, comments, and questions

- How big are the future datasets? How random are the accesses? How much concurrency in algorithms?
- Heroic programming will be probably be required to make 100,000 node programs work well – what about down scaling?
- A program using a library will usually call multiple interfaces during its execution life cycle – what are the options for data distribution?
- Domain workflow design may not be the same skill as building a scalable parallel operator – what will it will take care to enable these activities to be independent?
- A program using a library will only spend part of its execution time in the library – can/must parallel operators in the library be pipelined or execute in parallel?
- Load balance who's responsibility?
- Are interactive workflows needed? Would it help to reschedule a workflow while a person thinks to avoid speculative runs?
- Operator pushdown how far?
 - There is higher bandwidth and lower latency in the parallel storage array than outside, in the node than on the network, in the storage controller (FPGA) than in the node
 - Push operators close to data but keep a good network around for when that isn't possible

Workflow End User

Workflow definition

Domain Language (scripting?)

Collection of heroically coded parallel operators

Domain Data Model

(e.g. FASTA, FASTQ \rightarrow K/V Datasets)

Global Storage Layer

GPFS, K/V, etc

Memory/Storage Controllers

Support offload to Node/FPGA

Hybrid Non-volatile Memory

DRAM + Flash + PCM?

End to End Analysis

Massive Scale Data and Compute

Blue Gene Active Storage