Climate Science	I/O Pattern 000	Observations 00000	

Climate Science I/O

A sketch on Requirements, Trends & Future Challenges

Nathanael Hübbe nathanael.huebbe@informatik.uni-hamburg.de Julian Kunkel julian.martin.kunkel@informatik.uni-hamburg.de

Scientific Computing Department of Informatics University of Hamburg

10-01-2013

Introduction •	Climate Science	I/O Pattern 000	Observations	

About us

- Scientific Computing Workgroup at the University of Hamburg
- Located at the German Climate Computing Center
- Brings together computer scientists and geo scientists
- Focus on storage related research

	Climate Science	I/O Pattern 000	Observations 00000	
Workflow				

Workflow

- Model input
 - Can come from other model, some need preprocessing
- Model execution
 - Produce data
- Postprocessing
 - Analyze and visualize data
 - Time series generation (data transposition)
- Archive
 - Required for profound scientific working (DFG: 10 years)
 - Example: World Data Center for Climate at DKRZ
 - Active storage possibility: lossless compression
- Distribution

Some scientists use only data produced by others

	Climate Science	I/O Pattern 000	Observations 00000	
Data				

Data

A number of physical variables stored as arrays

Temperature, pressure, wind, …

- Array dimensions: longitude, latitude, height & time
- Icosahedral models:

longitude & latitude \rightarrow surface coordinate

	Climate Science	I/O Pattern 000	Observations	
Data				

Typical data sizes

- At least 20 k surface points
 - x number of height levels
 - x number of physical variables
 - x number of timesteps
 - \Rightarrow typical timestep sizes pprox 200 MiB
- Not everything calculated can be stored \Rightarrow typical dataset sizes \approx 10 GiB to 1 TiB

	Climate Science ○○○●	I/O Pattern 000	Observations	
Data				

Expected future data sizes

Climate scientists want cloud resolving models

- \Rightarrow Required cell size $\approx 1 \, km^2$
- \Rightarrow 500 M grid points needed
- A single timestep of a 3D variable \approx 200 GB
- 40 variables, 365 timesteps \approx 3 PB

Computer/Storage/Network technology are the limiting factors

Climate Science	I/O Pattern	Observations	
	000		

A schematic algorithm of model I/O

Climate Science	I/O Pattern ○●○	Observations	

Patterns

- Output is done ...
 - ... appending data to files
 - ... timestep by timestep (bursts)
 - ... with large requests
- Input is more diverse
 - May select only parts of a file (postprocessing)
 - May read complete files at once
 - May read timestep by timestep (forcing)

Climate Science	I/O Pattern ○○●	Observations	

I/O Middleware

- Libraries & file formats
 - Message based: GRIB & BUFR
 - Index based: NetCDF & HDF5
- Metadata
 - Normally added via standardized attributes
 - Example: NetCDF Climate and Forecast (CF) Metadata Convention
 - Self contained files force metadata replication
 - GRIB & BUFR metadata is table driven
 - \Rightarrow Significantly smaller, replication not an issue

	Climate Science	I/O Pattern 000	Observations •••••	
Trends and Challenges				

Trends and Challenges

- Sequential input dominates
- Output is shifting towards parallel/asynchronous
- Trend towards overlapping I/O and computation
 - Mostly via dedicated output processes
- Trend towards outsourcing of I/O
 - This is tightly coupled middleware
 - Examples are XIOS & cdi
- Trend towards high level automation
 - Tools that run & monitor complex workflows
 - Examples: cylc, ecflow & SMS
- Roughly one I/O process per node envisioned
 - Depends on postprocessing workload & effective I/O speed

	Climate Science	I/O Pattern 000	Observations ○●○○○	
Trends and Challenges				

Performance of different library builds on the blizzard p249, parallel runs with 4 processes

	Climate Science	I/O Pattern 000	Observations	
Abstract Models				

Master gathers synchronously

	Climate Science	I/O Pattern 000	Observations ○○○●○	
Abstract Models				

Output process gathers asynchronously

	Climate Science	I/O Pattern 000	Observations ○○○○●	
Abstract Models				

Direct asynchronous output

Climate Science	I/O Pattern 000	Observations	Summary •

Summary

- Parallel applications access files sequentially (mostly)
- Large volumes of regular structured data
- Multiple competing file formats & libraries
- Compression is useful, most effective on application level
- Trends towards outsourcing & high level automation
- Best way of I/O parallelization is still unclear