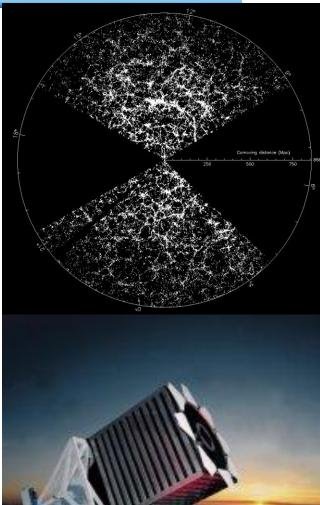


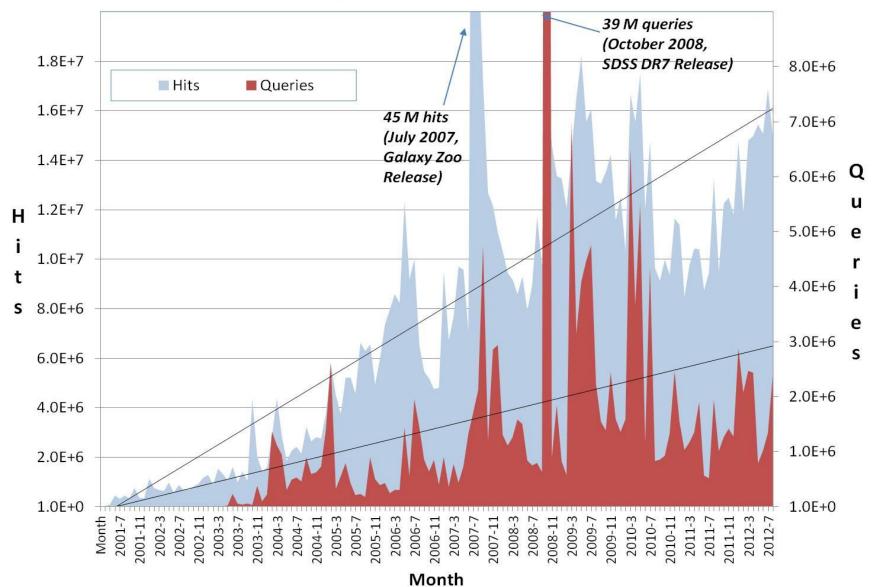


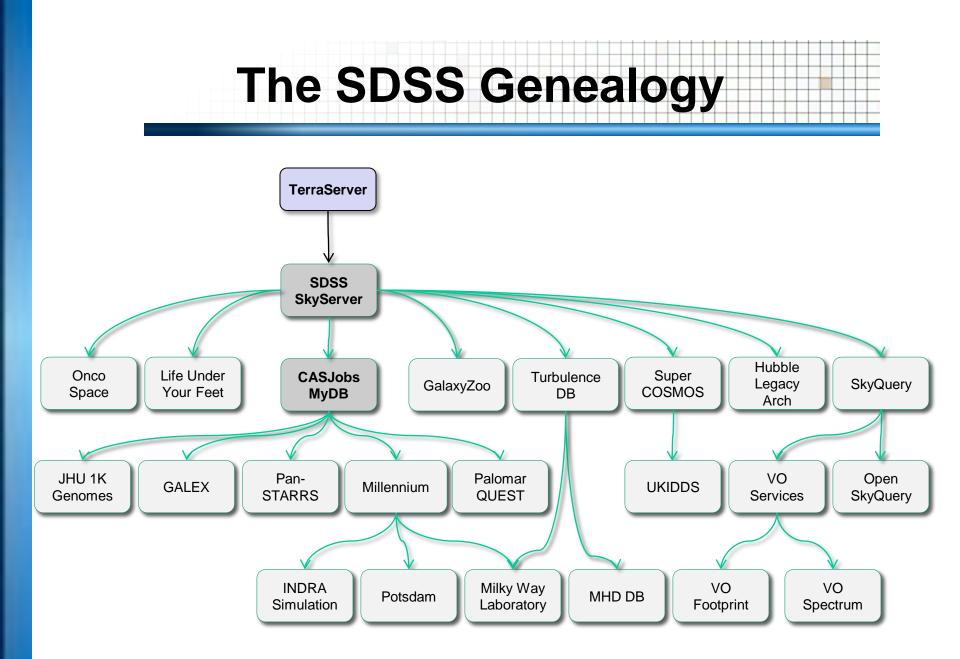
Data-Intensive Computing in Astrophysics

Alex Szalay JHU



Sloan Digital Sky Survey


- "The Cosmic Genome Project"
- Two surveys in one
 - Photometric survey in 5 bands
 - Spectroscopic redshift survey
- Data is public
 - 2.5 Terapixels of images => 5 Tpx
 - 10 TB of raw data => 120TB processed
 - 0.5 TB catalogs => 35TB in the end
- Started in 1992, finished in 2008
- Database and spectrograph built at JHU (SkyServer)


Skyserver

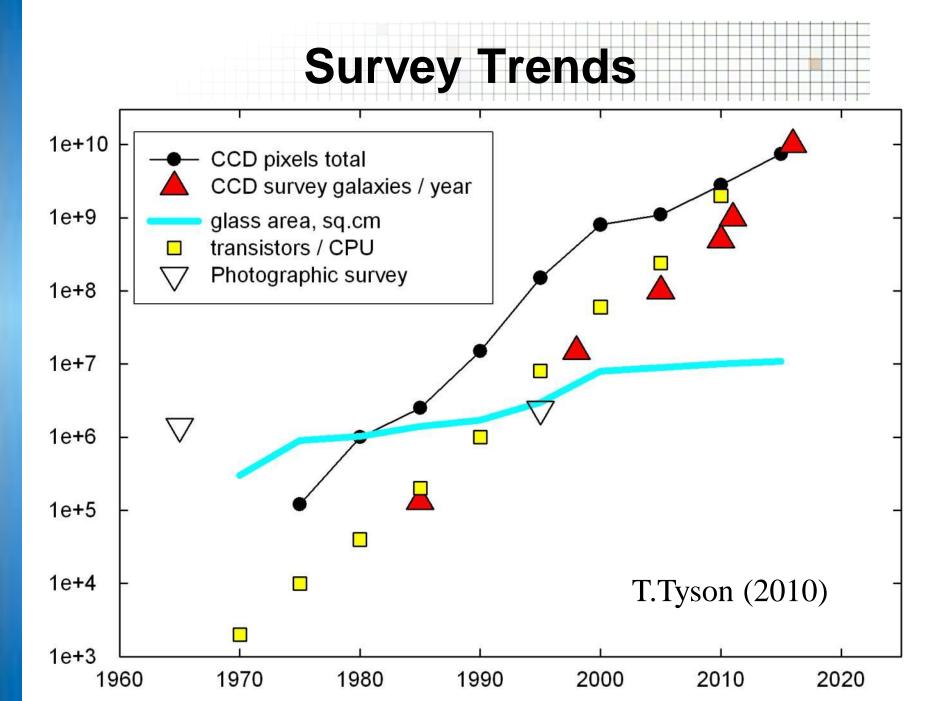
- Prototype in 21st Century data access
 - 1 billion web hits in 10 years
 - 4,000,000 distinct users vs. 15,000 astronomers
 - The emergence of the "Internet scientist"
 - The world's most used astronomy facility today
 - Collaborative server-side analysis done by 5K astronomers (30%)
- GalaxyZoo (Lintott et al)
 - 40 million visual galaxy classifications by the public
 - Enormous publicity (CNN, Times, Washington Post, BBC)
 - 300,000 people participating, blogs, poems...
 - Original discoveries by the public (Voorwerp, Green Peas)

	Schema Projects						
Welcome to the DR7	sitell				For Astronome		503
Survey, a project to m the universe. We would of the universe, and sh	data from the Sloan Digit, ake a map of a large par d like to show you the be hare with you our excitent ap in the history of the wo	t of D auty N ient as N	the site hosts da Data Release 7 What's new in I what's new on ind known prol fore	DR7 this site	A separate branc website for profe astronomers (En More		
SkyServer Tools	Science Project	s	Info Links		Help		
Famous places	Basic		About Astronom		Getting Started		
Get images	Advanced		About the SDSS		FAQ		1
Visual Tools	Challenges		About the SkySe	erver	How To		
Explore	For Kids		SDSS Data Rele	sase 7	Glossary		
Search	Games and Contest		SDSS Project W	ebsite	Schema Brows	er .	
Object Cross-ID	Teachers		Open SkyQuery		Sample SQL Q	ueries	
CasJobs	Links to other proje	ds	Images of RC3	Galaxies	Details of SDS		Pc M
2000				E 88			5ite Driv
200		-	and the second				1

Monthly Web Hits and SQL Queries

Why Is Astronomy Interesting?

- Approach inherently and traditionally data-driven
 - Cannot do experiments...
- Important spatio-temporal features
- Very large density contrasts in populations
- Real errors and covariances
- Many signals very subtle, buried in systematics
- Data sets large, pushing scalability
 - LSST will be 100PB


"Exciting, since it is worthless!"

— Jim Gray

LSST 8.4m 3.2Gpixel PanSTARRS 1.8m 1.4Gpixel

Virtual Observatory

- Federate all astronomy data in the world into one system
- Most challenges are sociological, not technical
- Trust: scientists want trustworthy, calibrated data with occasional access to low-level raw data
- Career rewards for young people still not there
- Threshold for publishing data is still too high
- Robust applications are hard to build (factor of 3...)
- Archives (and data) on all scales, all over the world
- Astronomy has successfully passed the first hurdles... but it is a long journey... no instant gratification

Data in HPC Simulations

- HPC is an instrument in its own right
- Largest simulations approach petabytes
 - from supernovae to turbulence, biology and brain modeling
- Pressure for public access to the best and latest through interactive numerical laboratories
- Creates new challenges in
 - How to move the petabytes of data (high speed networking)
 - How to look at it (render on top of the data, drive remotely)
 - How to interface (smart sensors, immersive analysis)
 - How to analyze (value added services, analytics, ...)
 - Architectures (supercomputers, DB servers, ??)

Cosmology Simulations

• Data size and scalability

- PB, trillion particles, dark matter
- Where is the data located, how does it get there
- Value added services
 - Localized (SED, SAM, star formation history, resimulations)
 - Rendering (viz, lensing, DM annihilation, light cones)
 - Global analytics (FFT, correlations of subsets, covariances)
- Data representations
 - Particles vs hydro
 - Particle tracking in DM data
 - Aggregates, summary of uncertainty quantification (UQ)

8.0

ø

ö

4.0

0.2

0.0

-0.2

Table : mpagalaxies..delucia2006a Galaxy ID = 415000584000000

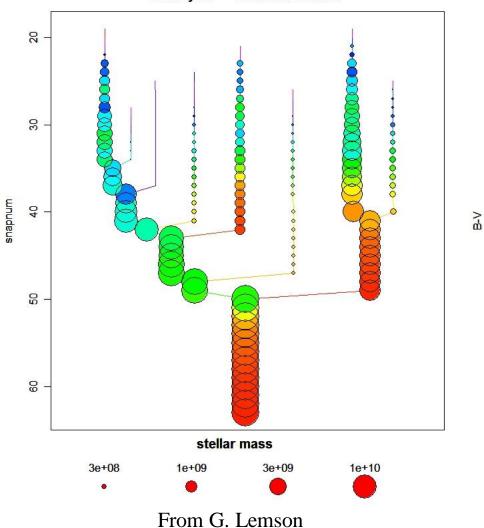
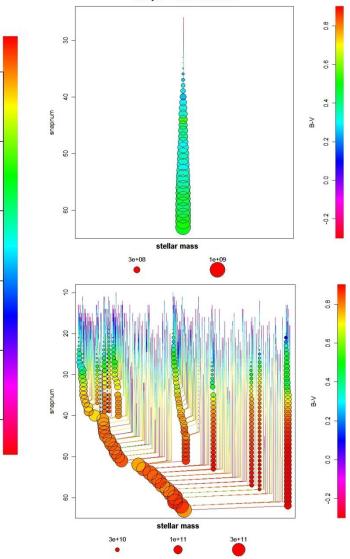
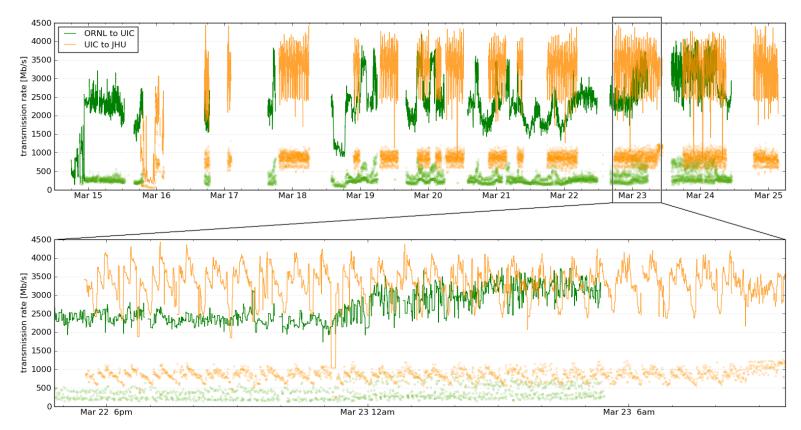
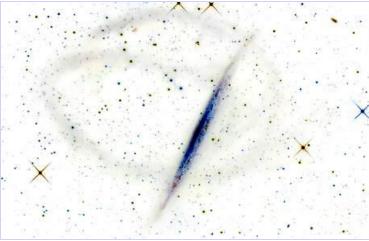



Table : mpagalaxies..delucia2006a Galaxy ID = 300004170000190


Spatial queries, random samples

- Spatial queries require multi-dimensional indexes.
- (x,y,z) does not work: need discretisation
 - index on (ix,iy,iz) withix=floor(x/10) etc
- More sophisticated: space fillilng curves
 - bit-interleaving/octtree/Z-Index
 - Peano-Hilbert curve
 - Need custom functions for range queries
 - Plug in modular space filling library (Budavari)
 - Random sampling using a RANDOM column
 - RANDOM from [0,100000]

Silver River Transfer


150TB in less than 10 days from Oak Ridge to JHU using a dedicated 10G connection

The Milky Way Laboratory

- Use cosmology simulations as an immersive laboratory for general users
- Via Lactea-II (20TB) as prototype, then Silver River (50B particles) as production (15M CPU hours)
- 800+ hi-rez snapshots (2.6PB) => 800TB in DB
- Users can insert test particles (dwarf galaxies) into system and follow trajectories in pre-computed simulation
- Users interact remotely with a PB in 'real time'

Madau, Rockosi, Szalay, Wyse, Silk, Kuhlen, Lemson, Westermann, Blakeley

Visualizing Petabytes

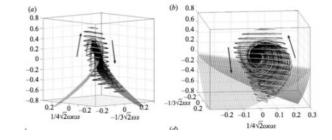
- Needs to be done where the data is...
- It is easier to send a HD 3D video stream to the user than all the data
 - Interactive visualizations driven remotely
- Visualizations are becoming IO limited: precompute octree and prefetch to SSDs
- It is possible to build individual servers with extreme data rates (5GBps per server... see Data-Scope)
- Prototype on turbulence simulation already works: data streaming directly from DB to GPU
- N-body simulations next

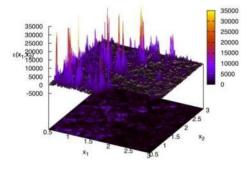
Real Time Interactions with TB

- Aquarius simulation (V.Springel, Heidelberg)
- 150M particles, 128 timesteps
- 20B total points, 1.4TB total
- Real-time, interactive on a single GeForce 9800
- Hierarchical merging of particles over an octree
- Trajectories computed from 3 subsequent snapshots
- Tag particles of interest interactively
- Limiting factor: disk streaming speed
- Done by an undergraduate over two months (Tamas Szalay) with Volker Springel and G. Lemson

http://arxiv.org/abs/0811.2055

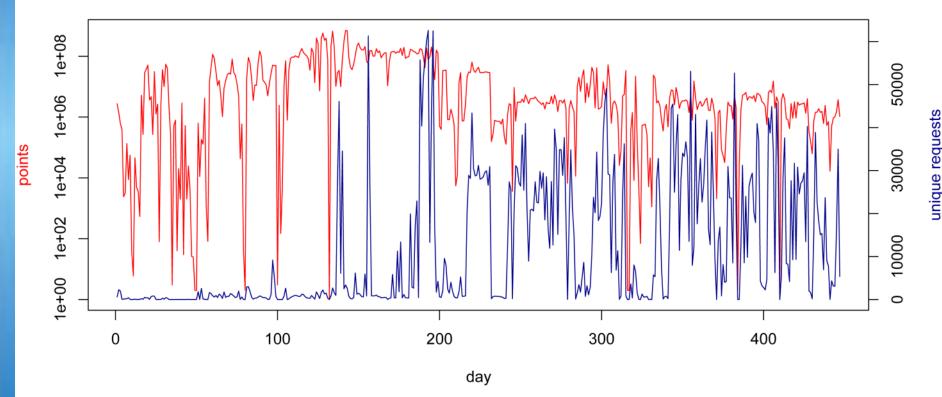
from T. Szalay, G. Lemson, V. Springel (2006)


Immersive Turbulence


"... the last unsolved problem of classical physics..." Feynman

Understand the nature of turbulence

- Consecutive snapshots of a large simulation of turbulence: now 30 Terabytes
- Treat it as an experiment, *play* with the database!
- Shoot test particles (sensors) from your laptop into the simulation, like in the movie Twister
- Next: 70TB MHD simulation
- New paradigm for analyzing simulations!


with C. Meneveau, S. Chen (Mech. E), G. Eyink (Applied Math), R. Burns (CS)

Daily Usage

Turbulence Database Usage by Day

2011: exceeded 100B points, delivered publicly

Streaming Visualization of Turbulence

Kai Buerger, Technische Universitat Munich, 24 million particles

Visualization of the Vorticity

Kai Buerger, Technische Universitat Munich

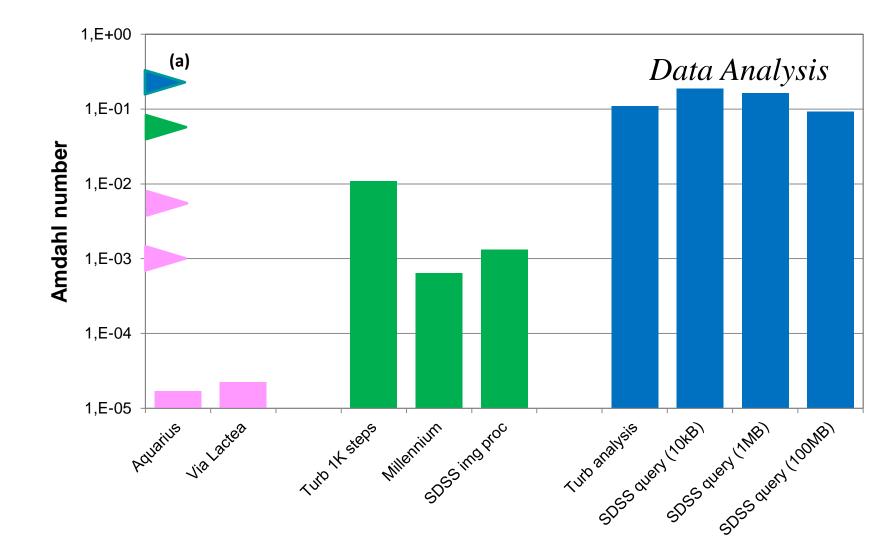
Architectual Challenges

- How to build a system good for the analysis?
- Where should data be stored
 - Not at the supercomputers (too expensive storage)
 - Computations and visualizations must be on top of the data
 - Need high bandwidth to source of data
- Databases are a good model, but are they scalable?
 - Google (Dremel, Tenzing, Spanner: exascale SQL)
 - Need to be augmented with value-added services
- Makes no sense to build master servers, scale out
 - Cosmology simulations are not hard to partition
 - Use fast, cheap storage, GPUs for some of the compute
 - Consider a layer of large memory systems

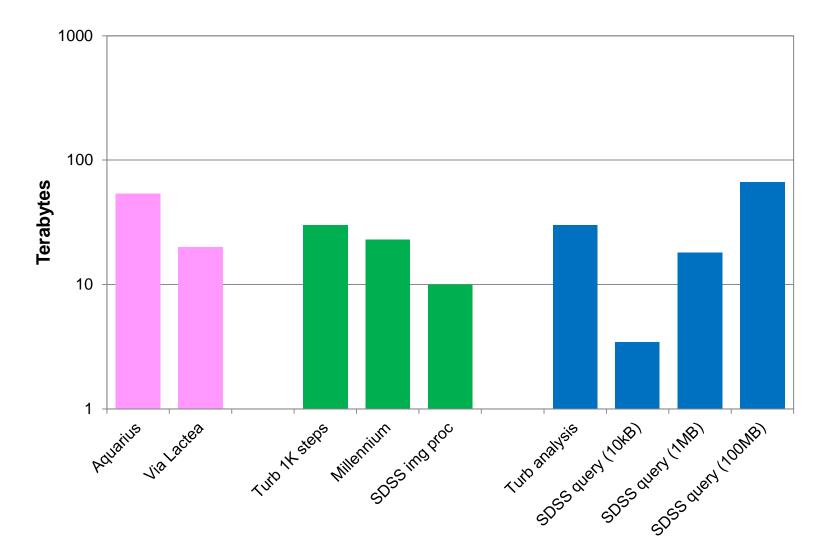
Amdahl's Laws

Gene Amdahl (1965): Laws for a balanced system

- i. Parallelism: max speedup is S/(S+P)
- ii. One bit of IO/sec per instruction/sec (BW)
- iii. One byte of memory per one instruction/sec (MEM)


Table 1. Amdahl's laws applied to various system powers.								
Operations per second	RAM	Disk I/O bytes/s	Disks for that bandwidth at 100 Mbytes/s/disk	Disk byte capacity (100x RAM)	Disks for that capacity at 1 Tbyte/disk			
10 ⁹	Gigabyte	10 ⁸	1	1011	1			
10 ¹²	Terabyte	1011	1,000	1014	100			
1015	Petabyte	10 ¹⁴	1,000,000	10 ¹⁷	100,000			
1018	Exabyte	10 ¹⁷	1,000,000,000	10 ²⁰	100,000,000			

Modern multi-core systems move farther away from Amdahl's Laws (Bell, Gray and Szalay 2006)


Typical Amdahl Numbers

System	CPU	GIPS	RAM	disklO	Amo	lahl
	count	[GHz]	[GB]	[MB/s]	RAM	10
BeoWulf	100	300	200	3000	0.67	0.08
Desktop	2	6	4	150	0.67	0.2
Cloud VM	1	3	4	30	1.33	0.08
SC1	212992	150000	18600	16900	0.12	0.001
SC2	2090	5000	8260	4700	1.65	0.008
GrayWulf	416	1107	1152	70000	1.04	0.506
BGAS	17	1.6	16	2000	0.59	0.590

Amdahl Numbers for Data Sets

The Data Sizes Involved

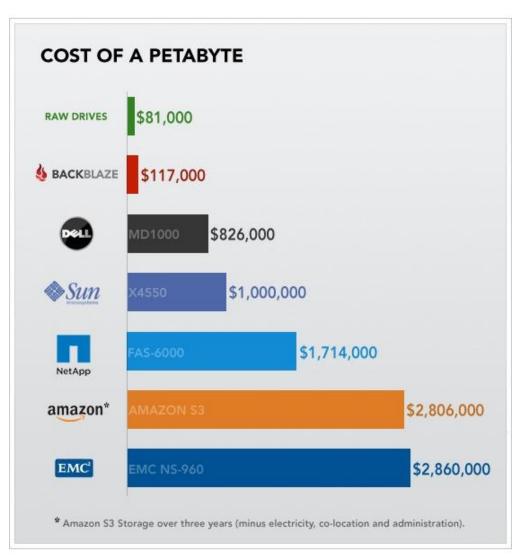
DISC Needs Today

- Disk space, disk space, disk space!!!!
- Current problems not on Google scale yet:
 - 10-30TB easy, 100TB doable, 300TB really hard
 - For detailed analysis we need to park data for several months
- Sequential IO bandwidth
 - If not sequential for large data set, we cannot do it
- How do can move 100TB within a University?
 - 1Gbps 10 days
 - 10 Gbps
 1 day (but need to share backbone)
 - 100 lbs box few hours
- From outside?
 - Dedicated 10Gbps or FedEx

Tradeoffs Today

Stu Feldman: Extreme computing is about tradeoffs

Ordered priorities for data-intensive scientific computing


- 2. Cost

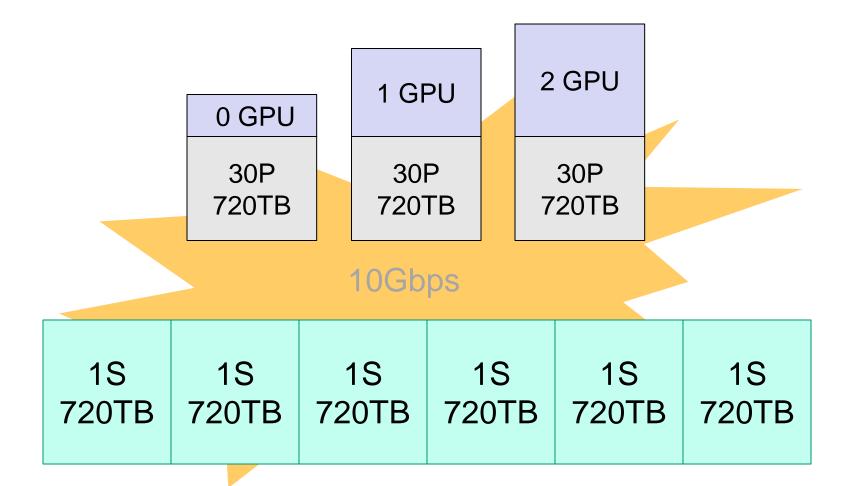
- 1. Total storage (-> low redundancy)
 - (-> total cost vs price of raw disks)
- 3. Sequential IO (-> locally attached disks, fast ctrl)
- *4.* Fast streams (->GPUs inside server)
- 5. Low power (-> slow normal CPUs, lots of disks/mobo)

The order will be different every year...

Challenges today: disk space, then memory

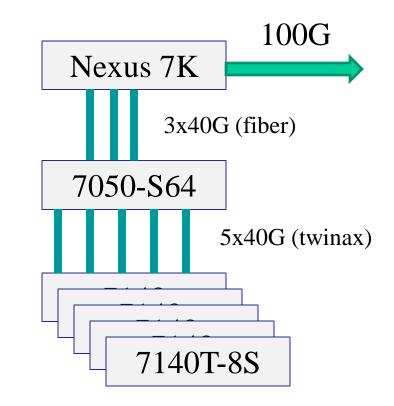
Cost of a Petabyte

From backblaze.com Aug 2009



JHU Data-Scope

- Funded by NSF MRI to build a new 'instrument' to look at data
- Goal: ~100 servers for \$1M + about \$200K switches+racks
- Two-tier: performance (P) and storage (S)
- Mix of regular HDD and SSDs
- Large (6.5PB) + cheap + fast (500 GBps), but ...
 - ..a special purpose instrument


- -	Final configuration							
Amdahl Number		1P	1S	All P	All S	Full		
1.38	servers	1	1	90	6	102		
	rack units	4	34	360	204	564		NSF
	capacity	24	720	2160	4320	6480	ТВ	
	price	8.8	57	8.8	57	792	\$K	
	power	1.4	10	126	60	186	kW	
	GPU*	1.35	0	121.5	0	122	TF	
	seq IO	5.3	3.8	477	23	500	GBps	110121
	IOPS	240	54	21600	324	21924	kIOPS	_
	netwk bw	10	20	900	240	1140	Gbps	

Network Architecture

- Arista Networks switches (10G, copper and SFP+)
- 5x 7140T-8S for the Top of the Rack (TOR) switches
 - 40 CAT6, 8 SFP+
- 7050-S64 for the core
 - 64x SFP+, 4x QSFP+ (40G)
- Fat-tree architecture
- Uplink to Cisco Nexus 7K
 - 2x100G card
 - 6x40G card

How to Use the Data-Scope?

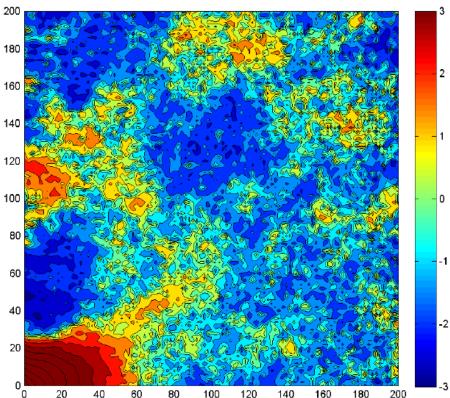
- Write short proposal (<1 page)
- Bring your own data to JHU (10TB-1PB)
- Get a dedicated machines for a few months
- Pick your platform (Sci Linux or Windows+SQL)
- Pick special SW environment (MATLAB, etc)
- Partition the data
- Start crunching
- Take away the result or buy disks for cold storage

Crossing the PB Boundary

- Via Lactea-II (20TB) as prototype, then Silver River (50B particles) as production (15M CPU hours)
- 800+ hi-rez snapshots (2.6PB) => 800TB in DB
- Users can insert test particles (dwarf galaxies) into system and follow trajectories in pre-computed simulation
- Users interact remotely with a PB in 'real time'
 Madau, Rockosi, Szalay, Wyse, Silk, Kuhlen,
 Lemson, Westermann, Blakeley
- INDRA (512 1Gpc box with 1G particles, 1.1PB)
 - Bridget Falck talk

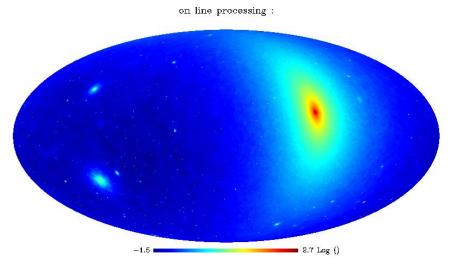
Large Arrays in SQL Server

- Recent effort by Laszlo Dobos (w. J. Blakeley and D. Tomic)
- User defined data-type written in C++
- Arrays packed into varbinary(8000) or varbinary(max)
- Also direct translation to Matlab arrays
- Various subsets, aggregates, extractions and conversions in T-SQL (see regrid example:)


```
SELECT s.ix, DoubleArray.Avg(s.a)
INTO ##temptable
FROM DoubleArray.Split(@a,Int16Array.Vector_3(4,4,4)) s
SELECT @subsample = DoubleArray.Concat_N('##temptable')
@a is an array of doubles with 3 indices
The first command averages the array over 4×4×4 blocks,
returns indices and the value of the average into a table
Then we build a new (collapsed) array from its output
```

Using GPUs

- Massive multicore platform emerging
 - GPGPU, multicores (Intel MIC/PHI)
 - Becoming mainstream (Titan, Blue Waters, Tsunami, Stampede)
- Advantages
 - 100K+ data parallel threads
 - An order of magnitude lower Watts/GF
 - Integrated with the database (execute UDF on GPU)
- Disadvantages
 - Only 6GB of memory per board
 - PCIe limited
 - Special coding required


Galaxy Correlations

- Generated 16M random points with correct radial and angular selection for SDSS-N
- Use 500K galaxies with 3D distances from SDSS
- Originally done on an NVII ²⁰⁰
- 600 trillion galaxy/random
- Brute force massively para 140 faster than tree-code for hi 120

Dark Matter Annihilation

- Data from the Via Lactea II Simulation (400M particles)
- Computing the dark matter annihilation
- Original code by M. Kuhlen runs in 8 hours for a single image
- New GPU based code runs in 24 sec, Open GL shader lang. (Lin Yang, 2nd year grad student at JHU)
- Soon: interactive service (design your own cross-section)
- Would apply very well to lensing and image generation

Summary

- Amazing progress in 7 years
- Millennium is prime showcase of how to use simulations
- Community is now using the DB as an instrument
- New challenges emerging:
 - Petabytes of data, trillions of particles
 - Increasingly sophisticated value added services
 - Need a coherent strategy to go to the next level
- It is not just about storage, but how to integrate access and computation
- Bridging the gap between data server and supercomputer
- Dramatically increase the use of HPC simulations

"If I had asked people what they wanted, they would have said faster horses..."

-Henry Ford

From a recent book by Eric Haseltine: "Long Fuse and Big Bang"