
It´s The Memory, 
Stupid! 

 Understanding the Memory Hierarchy for Better Data 
Management

Francesc Alted 
Software Architect 

CodeJam 2014, Jülich Supercomputing Centre	

  January 26, 2014



About Continuum Analytics

• Develop new ways on how data is stored, 
computed, and visualized.	


• Provide open technologies for data 
integration on a massive scale.	


• Provide software tools, training, and 
integration/consulting services to 
corporate, government, and educational 
clients worldwide.



Main Software Projects

• Anaconda: Easy deployment of Python 
packages	


• Bokeh: Interactive visualization and analysis 
for the web and in Python	


• Blaze: Out-of-core and distributed data 
computation & store (NG NumPy)	


• Wakari: Sharing Python environments in 
the web (Python for teams)



Overview

• The Era of ‘Big Data’	


• A small exercise on query performance	


• The Starving CPU problem	


• Efficient computing: numexpr and Numba	


• Optimal Containers for Big Data



The Dawn of ‘Big Data’

“There were 5 exabytes of information 
created between the dawn of 

civilization through 2003, but that much 
information is now created	


every 2 days, and the pace is increasing.”	

!

— Erich Schmidt, Google CEO, 
Techonomy Conference, August 4, 2010



Interactivity	
and Big Data

• Interactivity is crucial for handling data	


• Interactivity and performance are crucial 
for handling Big Data



Python and ‘Big Data’

• Python is an interpreted language and 
hence, it offers interactivity	


• Myth: “Python is slow, so why on hell are 
you going to use it for Big Data?”	


• Answer: Python has access to an incredibly 
powerful range of libraries that boost its 
performance far beyond your expectations	


• ...and during this talk I will prove it…



NumPy: A Standard ‘De 
Facto’ Container
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• array[2]; array[1,1:5, :]; array[[3,6,10]]	


• (array1**3 / array2) - sin(array3)	


• numpy.dot(array1, array2): access to 
optimized BLAS (*GEMM) functions	


• and much more...

Operating with 
NumPy



Interlude:  
 Querying Big Tables



Exercise

• We are starting to see datasets with a huge 
number of rows, and more importantly, 
columns	


• Let’s do an experiment querying such a 
large table by using several classic methods 
(and a new one :)



The Table & The Query

• Suppose that our table is something like 
one million rows and 100 columns (yes, we 
are talking about big data)	


• The query is like:  
 
(f2>.9) and ((f8>.3) and (f8<.4)) 

• Selectivity is about 1%



Times for querying (seconds)
Database

 (in-memory) (create) (query)

NumPy 23.4 1.97

sqlite3 454 28.9

sqlite3 (index) 140 2.87

BLZ 22.0 0.081

Run on Mac OSX, Core2 Duo @ 2.13 GHz



Open Questions

• If all the query engines store their data in-
memory, and written in C, why they have 
such a large difference in performance?	


• Why SQLite3 performance is so poor, even 
when using indexing?	


• Why BLZ (essentially a data container on 
steroids) can be up to 25x faster than 
NumPy for querying?



The Starving CPU 
Problem

“Across the industry, today’s chips are largely 
able to execute code faster than we can feed 

them with instructions and data.”	

!

– Richard Sites, after his article 
 “It’s The Memory, Stupid!”,  

Microprocessor Report, 10(10),1996



Memory Access Time 
vs CPU Cycle Time



Book in 
2009



The Status of CPU 
Starvation in 2014

• Memory latency is much slower (between 
250x and 1000x) than processors.	


• Memory bandwidth is improving at a better 
rate than memory latency, but it is also 
slower than processors (between 30x and 
100x).



CPU Caches to the 
Rescue

• CPU cache latency and throughput 
are much better than memory	


• However: the faster they run the 
smaller they must be (because of heat 
dissipation problems)



CPU Cache Evolution

Up to end 80’s 90’s and 2000’s 2010’s

MARCH/APRIL 2010 3

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to 
the CPU) are faster but have reduced 
capacities and are best suited for per-
forming computations; higher-level 
caches are slower but have higher ca-
pacity and are best suited for storage 
purposes.

Figure 1 shows the evolution of 
this hierarchical memory model over 
time. The forthcoming (or should I 
say the present?) hierarchical model 
includes a minimum of six memory 
levels. Taking advantage of such a 
deep hierarchy isn’t trivial at all, and 
programmers must grasp this fact 
if they want their code to run at an  
acceptable speed.

Techniques to Fight  
Data Starvation 
Unlike the good old days when the 
processor was the main bottleneck, 
memory organization has now be-
come the key factor in optimization. 
Although learning assembly language 
to get direct processor access is (rela-
tively) easy, understanding how the 
hierarchical memory model works—
and adapting your data structures 
accordingly—requires considerable 
knowledge and experience. Until we 
have languages that facilitate the de-
velopment of programs that are aware 

of memory hierarchy (for an example 
in progress, see the Sequoia project 
at www.stanford.edu/group/sequoia), 
programmers must learn how to 
deal with this problem at a fairly low 
level.4 

There are some common techniques 
to deal with the CPU data-starvation 
problem in current hierarchical mem-
ory models. Most of them exploit the 
principles of temporal and spatial  
locality. In temporal locality, the target 
dataset is reused several times over 
a short period. The first time the 
dataset is accessed, the system must 
bring it to cache from slow memory; 
the next time, however, the processor 
will fetch it directly (and much more 
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In 
this case, circuits are designed to fetch 
memory elements that are clumped 
together much faster than if they’re 
dispersed. In addition, specialized 
circuitry (even in current commodity 
hardware) offers prefetching—that is, 
it can look at memory-access patterns 
and predict when a certain chunk of 
data will be used and start to trans-
fer it to cache before the CPU has  
actually asked for it. The net result is 
that the CPU can retrieve data much 
faster when spatial locality is properly 
used.

Programmers should exploit the op-
timizations inherent in temporal and 
spatial locality as much as possible. 
One generally useful technique that 
leverages these principles is the block-
ing technique (see Figure 2). When 
properly applied, the blocking tech-
nique guarantees that both spatial and 
temporal localities are exploited for 
maximum benefit.

Although the blocking technique 
is relatively simple in principle, it’s 
less straightforward to implement 
in practice. For example, should the 
basic block fit in cache level one, 
two, or three? Or would it be bet-
ter to fit it in main memory—which 
can be useful when computing large, 
disk-based datasets? Choosing from 
among these different possibilities 
is difficult, and there’s no substitute 
for experimentation and empirical 
analysis.

In general, it’s always wise to use 
libraries that already leverage the 
blocking technique (and others) for 
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is 
a virtual machine written in Python 
and C that lets you evaluate poten-
tially complex arithmetic expressions 
over arbitrarily large arrays. Using the 
blocking technique in combination 

Figure 1. Evolution of the hierarchical memory model. (a) The primordial (and simplest) model; (b) the most common current 
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade: 
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.

Mechanical disk Mechanical disk Mechanical disk

Speed
C

ap
ac

ity

Solid state disk

Main memory

Level 3 cache

Level 2 cache

Level 1 cache

Level 2 cache

Level 1 cache

Main memoryMain memory

CPUCPU

(a) (b) (c)

Central
processing
unit (CPU)

CISE-12-2-ScientificPro.indd   3 1/29/10   11:21:43 AM



numexpr

• numexpr is a computational engine for 
NumPy that makes a sensible use of the 
memory hierarchy for better performance 	


• Other libraries normally use numexpr 
when it is time to accelerate large 
computations	


• PyTables, pandas and BLZ can all leverage 
numexpr



Computing with NumPy  
Temporaries go to memory



Computing with Numexpr  
Temporaries stay in cache



First Hint for Open 
Questions

• BLZ is using numexpr behind the scenes so 
as to do the computations needed for the 
query	


• It creates less in-memory temporaries than 
NumPy, and CPUs can do more work



Second Interlude 
Beyond numexpr: 

Numba



Numexpr Limitations

• Numexpr only implements element-wise 
operations, i.e.  ‘a*b’ is evaluated as:  
 
for i in range(N):	

    c[i] = a[i] * b[i]	


• In particular, it cannot deal with things like:	

for i in range(N):	

    c[i] = a[i-1] + a[i] * b[i]



Numba: Overcoming 
numexpr Limitations

• Numba is a JIT that can translate a subset 
of the Python language into machine code	


• It uses LLVM infrastructure behind the 
scenes	


• Can achieve similar or better performance 
than numexpr, but with more flexibility 



LLVM 3.1

Intel Nvidia AppleAMD

OpenCLISPC CUDA CLANGOpenMP

LLVM-PY

Python Function Machine Code

How Numba Works



Numba Example:  
Computing a Polynomial

import numpy as np 
import numba as nb 
!
N = 10*1000*1000 
!
x = np.linspace(-1, 1, N) 
y = np.empty(N, dtype=np.float64) 
!
@nb.autojit 
def poly(x, y): 
    for i in range(N): 
        # y[i] = 0.25*x[i]**3 + 0.75*x[i]**2 + 1.5*x[i] - 2 
        y[i] = ((0.25*x[i] + 0.75)*x[i] + 1.5)*x[i] - 2 
!
poly(x, y)  # run through Numba! 



Times for Computing (sec.)

Poly version (I) (II)

Numpy 1.086 0.505

numexpr 0.108 0.096

Numba 0.055 0.054

Pure C, OpenMP 0.215 0.054

Run on Mac OSX, Core2 Duo @ 2.13 GHz



Numba: LLVM for Python

Python code can reach C 
speed without having to 

program in C itself

(and without losing interactivity!)



Numba is Powering Blaze

• Blaze is Continuum Analytics' on-going 
effort to provide efficient computation for 
out-of-core and distributed data.	


• Blaze is using a series of technologies for 
this: DyND, Numba, BLZ	


• Numba is at the computational core of 
Blaze



FlyPy Has Born	

(Numba in 2014)

• Complete reimplementation of 
Numba (i.e. different computing 
engine)	


• More powerful type system than 
Numba	


• High Performance Computing for 
High Level Language (Python)	




FlyPy Highlights

• SIMD support	


• Fused generators (restricted use)	


• Garbage collection 	


• Efficient user-defined abstraction	


• Shared nothing architecture with 
optional safe sharing cache latency



Optimal Containers for 
High Performance 

Computing

If a datastore requires all data to fit in 
memory, it isn't big data


!
--  Alex Gaynor (in twitter)

https://twitter.com/alex_gaynor


The Need for a Good 
Data Container

• Too many times we are too focused on 
computing as fast as possible	


• But we have seen how important data 
access is	


• BLZ is data container for in-memory or 
on-disk data that can be compressed



The Need for 
Compression

• Compression allows to store more data 
using the same storage capacity	


• Sure, it uses more CPU time to compress/
decompress data	


• But, that actually means using more wall 
clock time?



Blosc: (de)compressing 
faster than memcpy()

Transmission + decompression faster than direct transfer?



Source: Howison, M. (in press). High-throughput compression of FASTQ data 
with SeqDB. IEEE Transactions on Computational Biology and Bioinformatics.
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TABLE 1
Test Data Sets

# Source Identifier Sequencer Read Count Read Length ID Lengths FASTQ Size
1 1000 Genomes ERR000018 Illumina GA 9,280,498 36 bp 40–50 1,105 MB
2 1000 Genomes SRR493233 1 Illumina HiSeq 2000 43,225,060 100 bp 51–61 10,916 MB
3 1000 Genomes SRR497004 1 AB SOLiD 4 122,924,963 51 bp 78–91 22,990 MB

Fig. 1. In-memory throughputs for several compression schemes applied to increasing block sizes (where each
sequence is 256 bytes long).

into a memory buffer, timed the compression of block
into a second buffer, then timed the decompression
of the block back into the first buffer. We repeated
each of these tests 10 times and kept the minimum
runtime, which represents the best-case scenario when
background noise from other processes is at its lowest.
As a baseline, we also performed a memcpy of the first
buffer to the second, which measures the bidirectional
memory bandwidth of the system. We calculated
throughput as the size of the original, uncompressed
block divided by runtime. Sequences were stored with
256 bytes (100 bytes for sequence and quality score
data, and 56 bytes for the ID header) and both power
of 2 and power of 10 block sizes were used, ranging
from 1,000 to 33,554,432 sequences.

Figure 1 shows how throughput varied drastically
with block size for both SeqPack and BLOSC, and
how both were able to achieve higher throughput than
memcpy, thanks to their compression of the buffer.
In contrast, zlib displayed a constant throughput
across block sizes that never rose above 5.8 MB/s for
compression or 189 MB/s for decompression.

BLOSC attained a maximum throughput of nearly
12 GB/s for decompression, but its highest compres-
sion throughput was an order of magnitude lower.
Although SeqDB’s throughputs were not as high as
BLOSC’s in decompression, SeqDB achieved more

consistent throughput across both compression and
decompression, topping 8 GB/s for both.

Finally, we also tested a “SeqPack + BLOSC” condi-
tion in which we compressed the buffer with SeqPack
followed by BLOSC, then decompressed with BLOSC
followed by SeqPack. Not surprisingly, with the extra
round of compression and decompression, this condi-
tion performed worse than either SeqPack or BLOSC
alone. Yet, it still outperformed zlib while yielding
similar compression ratios, as we will report in more
detail in the next section.

4.2 Compression Ratio and Throughput
Compression methods face a trade-off between
throughput and compression ratio. Additional pro-
cessing, and hence lower throughput, can improve
compression ratio. Some methods, like BLOSC and
zlib, have a tunable parameter for controlling this
trade-off, called the compression level.

We tested SeqDB against four alternative methods
for compressing NGS data sets. The most commonly
used method is probably gzip (which uses the same
compression algorithm as zlib). We ran gzip at
compression level 6 since this is the default level if
none is specified on the command line, and we sus-
pect this is the most common usage. Next, we tested
BioHDF with its default HDF5 zlib compression fil-

Example of How Blosc Accelerates Genomics I/O:	

SeqPack (backed by Blosc)



Second Hint for Open 
Questions	


• BLZ does make use of Blosc for dealing 
with compressed data transparently	


• That means not only better storage usage, 
but frequently better access time to the 
data



The btable object in BLZ

New row to append

• Columns are contiguous in memory	

• Chunks follow column order	

•  Very efficient for querying (specially with a 
   large number of columns)

Chunks



And a Third Hint…

• BLZ, differently from NumPy or SQLite3, 
stores columns contiguously in-memory or 
on-disk	


• Again, BLZ is making use of the principles 
of time and spatial locality for optimizing 
the access to memory	


• Blaze can leverage BLZ for storage and 
improved I/O capabilities



Summary

• Python is a perfect match for Big Data	


• Nowadays you should be aware of the 
memory system for getting good 
performance	


• Choosing appropriate data containers is of 
the utmost importance when dealing with 
Big Data
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“Across the industry, today’s chips are largely able to execute code 
faster than we can feed them with instructions and data.  There are no 
longer performance bottlenecks in the floating-point multiplier or in 
having only a single integer unit.  The real design action is in memory 
subsystems— caches, buses, bandwidth, and latency.”	

!
“Over the coming decade, memory subsystem design will be the only 
important design issue for microprocessors.”	

!

– Richard Sites, after his article “It’s The Memory, Stupid!”, 
Microprocessor Report, 10(10),1996



Thank you!


