
It´s The Memory,
Stupid!

 Understanding the Memory Hierarchy for Better Data
Management

Francesc Alted 
Software Architect 

CodeJam 2014, Jülich Supercomputing Centre	

 January 26, 2014

About Continuum Analytics

• Develop new ways on how data is stored,
computed, and visualized.	

• Provide open technologies for data
integration on a massive scale.	

• Provide software tools, training, and
integration/consulting services to
corporate, government, and educational
clients worldwide.

Main Software Projects

• Anaconda: Easy deployment of Python
packages	

• Bokeh: Interactive visualization and analysis
for the web and in Python	

• Blaze: Out-of-core and distributed data
computation & store (NG NumPy)	

• Wakari: Sharing Python environments in
the web (Python for teams)

Overview

• The Era of ‘Big Data’	

• A small exercise on query performance	

• The Starving CPU problem	

• Efficient computing: numexpr and Numba	

• Optimal Containers for Big Data

The Dawn of ‘Big Data’

“There were 5 exabytes of information
created between the dawn of

civilization through 2003, but that much
information is now created	

every 2 days, and the pace is increasing.”	

!

— Erich Schmidt, Google CEO,
Techonomy Conference, August 4, 2010

Interactivity	
and Big Data

• Interactivity is crucial for handling data	

• Interactivity and performance are crucial
for handling Big Data

Python and ‘Big Data’

• Python is an interpreted language and
hence, it offers interactivity	

• Myth: “Python is slow, so why on hell are
you going to use it for Big Data?”	

• Answer: Python has access to an incredibly
powerful range of libraries that boost its
performance far beyond your expectations	

• ...and during this talk I will prove it…

NumPy: A Standard ‘De
Facto’ Container

�����

������

������

���	�
�

��������	��
�������������

• array[2]; array[1,1:5, :]; array[[3,6,10]]	

• (array1**3 / array2) - sin(array3)	

• numpy.dot(array1, array2): access to
optimized BLAS (*GEMM) functions	

• and much more...

Operating with
NumPy

Interlude:  
 Querying Big Tables

Exercise

• We are starting to see datasets with a huge
number of rows, and more importantly,
columns	

• Let’s do an experiment querying such a
large table by using several classic methods
(and a new one :)

The Table & The Query

• Suppose that our table is something like
one million rows and 100 columns (yes, we
are talking about big data)	

• The query is like:  
 
(f2>.9) and ((f8>.3) and (f8<.4))

• Selectivity is about 1%

Times for querying (seconds)
Database

 (in-memory) (create) (query)

NumPy 23.4 1.97

sqlite3 454 28.9

sqlite3 (index) 140 2.87

BLZ 22.0 0.081

Run on Mac OSX, Core2 Duo @ 2.13 GHz

Open Questions

• If all the query engines store their data in-
memory, and written in C, why they have
such a large difference in performance?	

• Why SQLite3 performance is so poor, even
when using indexing?	

• Why BLZ (essentially a data container on
steroids) can be up to 25x faster than
NumPy for querying?

The Starving CPU
Problem

“Across the industry, today’s chips are largely
able to execute code faster than we can feed

them with instructions and data.”	

!

– Richard Sites, after his article 
 “It’s The Memory, Stupid!”,  

Microprocessor Report, 10(10),1996

Memory Access Time
vs CPU Cycle Time

Book in
2009

The Status of CPU
Starvation in 2014

• Memory latency is much slower (between
250x and 1000x) than processors.	

• Memory bandwidth is improving at a better
rate than memory latency, but it is also
slower than processors (between 30x and
100x).

CPU Caches to the
Rescue

• CPU cache latency and throughput
are much better than memory	

• However: the faster they run the
smaller they must be (because of heat
dissipation problems)

CPU Cache Evolution

Up to end 80’s 90’s and 2000’s 2010’s

MARCH/APRIL 2010 3

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to
the CPU) are faster but have reduced
capacities and are best suited for per-
forming computations; higher-level
caches are slower but have higher ca-
pacity and are best suited for storage
purposes.

Figure 1 shows the evolution of
this hierarchical memory model over
time. The forthcoming (or should I
say the present?) hierarchical model
includes a minimum of six memory
levels. Taking advantage of such a
deep hierarchy isn’t trivial at all, and
programmers must grasp this fact
if they want their code to run at an
acceptable speed.

Techniques to Fight
Data Starvation
Unlike the good old days when the
processor was the main bottleneck,
memory organization has now be-
come the key factor in optimization.
Although learning assembly language
to get direct processor access is (rela-
tively) easy, understanding how the
hierarchical memory model works—
and adapting your data structures
accordingly—requires considerable
knowledge and experience. Until we
have languages that facilitate the de-
velopment of programs that are aware

of memory hierarchy (for an example
in progress, see the Sequoia project
at www.stanford.edu/group/sequoia),
programmers must learn how to
deal with this problem at a fairly low
level.4

There are some common techniques
to deal with the CPU data-starvation
problem in current hierarchical mem-
ory models. Most of them exploit the
principles of temporal and spatial
locality. In temporal locality, the target
dataset is reused several times over
a short period. The first time the
dataset is accessed, the system must
bring it to cache from slow memory;
the next time, however, the processor
will fetch it directly (and much more
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In
this case, circuits are designed to fetch
memory elements that are clumped
together much faster than if they’re
dispersed. In addition, specialized
circuitry (even in current commodity
hardware) offers prefetching—that is,
it can look at memory-access patterns
and predict when a certain chunk of
data will be used and start to trans-
fer it to cache before the CPU has
actually asked for it. The net result is
that the CPU can retrieve data much
faster when spatial locality is properly
used.

Programmers should exploit the op-
timizations inherent in temporal and
spatial locality as much as possible.
One generally useful technique that
leverages these principles is the block-
ing technique (see Figure 2). When
properly applied, the blocking tech-
nique guarantees that both spatial and
temporal localities are exploited for
maximum benefit.

Although the blocking technique
is relatively simple in principle, it’s
less straightforward to implement
in practice. For example, should the
basic block fit in cache level one,
two, or three? Or would it be bet-
ter to fit it in main memory—which
can be useful when computing large,
disk-based datasets? Choosing from
among these different possibilities
is difficult, and there’s no substitute
for experimentation and empirical
analysis.

In general, it’s always wise to use
libraries that already leverage the
blocking technique (and others) for
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is
a virtual machine written in Python
and C that lets you evaluate poten-
tially complex arithmetic expressions
over arbitrarily large arrays. Using the
blocking technique in combination

Figure 1. Evolution of the hierarchical memory model. (a) The primordial (and simplest) model; (b) the most common current
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade:
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.

Mechanical disk Mechanical disk Mechanical disk

Speed
C

ap
ac

ity

Solid state disk

Main memory

Level 3 cache

Level 2 cache

Level 1 cache

Level 2 cache

Level 1 cache

Main memoryMain memory

CPUCPU

(a) (b) (c)

Central
processing
unit (CPU)

CISE-12-2-ScientificPro.indd 3 1/29/10 11:21:43 AM

numexpr

• numexpr is a computational engine for
NumPy that makes a sensible use of the
memory hierarchy for better performance 	

• Other libraries normally use numexpr
when it is time to accelerate large
computations	

• PyTables, pandas and BLZ can all leverage
numexpr

Computing with NumPy  
Temporaries go to memory

Computing with Numexpr  
Temporaries stay in cache

First Hint for Open
Questions

• BLZ is using numexpr behind the scenes so
as to do the computations needed for the
query	

• It creates less in-memory temporaries than
NumPy, and CPUs can do more work

Second Interlude 
Beyond numexpr:

Numba

Numexpr Limitations

• Numexpr only implements element-wise
operations, i.e. ‘a*b’ is evaluated as:  
 
for i in range(N):	

 c[i] = a[i] * b[i]	

• In particular, it cannot deal with things like:	

for i in range(N):	

 c[i] = a[i-1] + a[i] * b[i]

Numba: Overcoming
numexpr Limitations

• Numba is a JIT that can translate a subset
of the Python language into machine code	

• It uses LLVM infrastructure behind the
scenes	

• Can achieve similar or better performance
than numexpr, but with more flexibility

LLVM 3.1

Intel Nvidia AppleAMD

OpenCLISPC CUDA CLANGOpenMP

LLVM-PY

Python Function Machine Code

How Numba Works

Numba Example:  
Computing a Polynomial

import numpy as np
import numba as nb
!
N = 10*1000*1000
!
x = np.linspace(-1, 1, N)
y = np.empty(N, dtype=np.float64)
!
@nb.autojit
def poly(x, y):
 for i in range(N):
 # y[i] = 0.25*x[i]**3 + 0.75*x[i]**2 + 1.5*x[i] - 2
 y[i] = ((0.25*x[i] + 0.75)*x[i] + 1.5)*x[i] - 2
!
poly(x, y) # run through Numba!

Times for Computing (sec.)

Poly version (I) (II)

Numpy 1.086 0.505

numexpr 0.108 0.096

Numba 0.055 0.054

Pure C, OpenMP 0.215 0.054

Run on Mac OSX, Core2 Duo @ 2.13 GHz

Numba: LLVM for Python

Python code can reach C
speed without having to

program in C itself

(and without losing interactivity!)

Numba is Powering Blaze

• Blaze is Continuum Analytics' on-going
effort to provide efficient computation for
out-of-core and distributed data.	

• Blaze is using a series of technologies for
this: DyND, Numba, BLZ	

• Numba is at the computational core of
Blaze

FlyPy Has Born	

(Numba in 2014)

• Complete reimplementation of
Numba (i.e. different computing
engine)	

• More powerful type system than
Numba	

• High Performance Computing for
High Level Language (Python)	

FlyPy Highlights

• SIMD support	

• Fused generators (restricted use)	

• Garbage collection 	

• Efficient user-defined abstraction	

• Shared nothing architecture with
optional safe sharing cache latency

Optimal Containers for
High Performance

Computing

If a datastore requires all data to fit in
memory, it isn't big data

!
-- Alex Gaynor (in twitter)

https://twitter.com/alex_gaynor

The Need for a Good
Data Container

• Too many times we are too focused on
computing as fast as possible	

• But we have seen how important data
access is	

• BLZ is data container for in-memory or
on-disk data that can be compressed

The Need for
Compression

• Compression allows to store more data
using the same storage capacity	

• Sure, it uses more CPU time to compress/
decompress data	

• But, that actually means using more wall
clock time?

Blosc: (de)compressing
faster than memcpy()

Transmission + decompression faster than direct transfer?

Source: Howison, M. (in press). High-throughput compression of FASTQ data
with SeqDB. IEEE Transactions on Computational Biology and Bioinformatics.

TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 4

TABLE 1
Test Data Sets

Source Identifier Sequencer Read Count Read Length ID Lengths FASTQ Size
1 1000 Genomes ERR000018 Illumina GA 9,280,498 36 bp 40–50 1,105 MB
2 1000 Genomes SRR493233 1 Illumina HiSeq 2000 43,225,060 100 bp 51–61 10,916 MB
3 1000 Genomes SRR497004 1 AB SOLiD 4 122,924,963 51 bp 78–91 22,990 MB

Fig. 1. In-memory throughputs for several compression schemes applied to increasing block sizes (where each
sequence is 256 bytes long).

into a memory buffer, timed the compression of block
into a second buffer, then timed the decompression
of the block back into the first buffer. We repeated
each of these tests 10 times and kept the minimum
runtime, which represents the best-case scenario when
background noise from other processes is at its lowest.
As a baseline, we also performed a memcpy of the first
buffer to the second, which measures the bidirectional
memory bandwidth of the system. We calculated
throughput as the size of the original, uncompressed
block divided by runtime. Sequences were stored with
256 bytes (100 bytes for sequence and quality score
data, and 56 bytes for the ID header) and both power
of 2 and power of 10 block sizes were used, ranging
from 1,000 to 33,554,432 sequences.

Figure 1 shows how throughput varied drastically
with block size for both SeqPack and BLOSC, and
how both were able to achieve higher throughput than
memcpy, thanks to their compression of the buffer.
In contrast, zlib displayed a constant throughput
across block sizes that never rose above 5.8 MB/s for
compression or 189 MB/s for decompression.

BLOSC attained a maximum throughput of nearly
12 GB/s for decompression, but its highest compres-
sion throughput was an order of magnitude lower.
Although SeqDB’s throughputs were not as high as
BLOSC’s in decompression, SeqDB achieved more

consistent throughput across both compression and
decompression, topping 8 GB/s for both.

Finally, we also tested a “SeqPack + BLOSC” condi-
tion in which we compressed the buffer with SeqPack
followed by BLOSC, then decompressed with BLOSC
followed by SeqPack. Not surprisingly, with the extra
round of compression and decompression, this condi-
tion performed worse than either SeqPack or BLOSC
alone. Yet, it still outperformed zlib while yielding
similar compression ratios, as we will report in more
detail in the next section.

4.2 Compression Ratio and Throughput
Compression methods face a trade-off between
throughput and compression ratio. Additional pro-
cessing, and hence lower throughput, can improve
compression ratio. Some methods, like BLOSC and
zlib, have a tunable parameter for controlling this
trade-off, called the compression level.

We tested SeqDB against four alternative methods
for compressing NGS data sets. The most commonly
used method is probably gzip (which uses the same
compression algorithm as zlib). We ran gzip at
compression level 6 since this is the default level if
none is specified on the command line, and we sus-
pect this is the most common usage. Next, we tested
BioHDF with its default HDF5 zlib compression fil-

Example of How Blosc Accelerates Genomics I/O:	

SeqPack (backed by Blosc)

Second Hint for Open
Questions	

• BLZ does make use of Blosc for dealing
with compressed data transparently	

• That means not only better storage usage,
but frequently better access time to the
data

The btable object in BLZ

New row to append

• Columns are contiguous in memory	

• Chunks follow column order	

• Very efficient for querying (specially with a 
 large number of columns)

Chunks

And a Third Hint…

• BLZ, differently from NumPy or SQLite3,
stores columns contiguously in-memory or
on-disk	

• Again, BLZ is making use of the principles
of time and spatial locality for optimizing
the access to memory	

• Blaze can leverage BLZ for storage and
improved I/O capabilities

Summary

• Python is a perfect match for Big Data	

• Nowadays you should be aware of the
memory system for getting good
performance	

• Choosing appropriate data containers is of
the utmost importance when dealing with
Big Data

References

• Blaze: http://blaze.pydata.org	

• BLZ: http://blz.pydata.org	

• Blosc: http://www.blosc.org	

• Numba: http://numba.pydata.org 	

• FlyPy: https://github.com/ContinuumIO/flypy

https://github.com/ContinuumIO/flypy

“Across the industry, today’s chips are largely able to execute code
faster than we can feed them with instructions and data. There are no
longer performance bottlenecks in the floating-point multiplier or in
having only a single integer unit. The real design action is in memory
subsystems— caches, buses, bandwidth, and latency.”	

!
“Over the coming decade, memory subsystem design will be the only
important design issue for microprocessors.”	

!

– Richard Sites, after his article “It’s The Memory, Stupid!”,
Microprocessor Report, 10(10),1996

Thank you!

