It's The Memory,
Stupid!

Understanding the Memory Hierarchy for Better Data
Management

Francesc Alted
Software Architect

CodeJam 2014, Julich Supercomputing Centre
January 26,2014

Ay, CONTINUUM
)
U=

About Continuum Analytics

® Develop new ways on how data is stored,
computed, and visualized.

® Provide open technologies for data
integration on a massive scale.

® Provide software tools, training, and
integration/consulting services to
corporate, government, and educational
clients worldwide.

CONTINUUM

o

Main Software Projects

® Anaconda: Easy deployment of Python
packages

® Bokeh: Interactive visualization and analysis
for the web and in Python

® Blaze: Out-of-core and distributed data
computation & store (NG NumPy)

® Wakari: Sharing Python environments in
the web (Python for teams)

Ay, CONTINUUM
)
U=

~ga

Overview

The Era of ‘Big Data’

A small exercise on query performance
The Starving CPU problem
Efficient computing: numexpr and Numba

Optimal Containers for Big Data

CONTINUUM

“There were 5 exabytes of information
created between the dawn of
civilization through 2003, but that much
information is now created

every 2 days, and the pace is increasing.”

— Erich Schmidt, Google CEO,
Techonomy Conference, August 4, 2010

The Dawn of ‘Big Data’

CONTINUUM

~ga

Interactivity and Big Data

® |nteractivity is crucial for handling data

® |nteractivity and performance are crucial
for handling Big Data

Ay, CONTINUUM
)
U=

Python and ‘Big Data’

® Python is an interpreted language and
hence, it offers interactivity

® Myth:"Python is slow, so why on hell are
you going to use it for Big Data?”

® Answer: Python has access to an incredibly
powerful range of libraries that boost its
performance far beyond your expectations

® ..and during this talk | will prove it...

Ay, CONTINUUM
)
U=

NumPy: A Standard '‘De
Facto' Container

CONTINUUM

~ga

¢ES <A NVIDIA. o
s ?‘ (> scikits-image

ﬁf} image processing in python

PyOpenCL

Ny | StotsModlels
’ Statistics in Pyt!/\om

O learn. CONTINUUM

ANALYTICS

Operating with
NumPy

® (array|*™*3 / array2) - sin(array3)

® numpy.dot(array |, array2): access to
optimized BLAS (*GEMM) functions

® and much more...

Interlude:
Querying Big Tables

Ay, CONTINUUM
)
U=

Exercise

® We are starting to see datasets with a huge
number of rows, and more importantly,
columns

® | et’s do an experiment querying such a
large table by using several classic methods
(and a new one :)

Ay, CONTINUUM
)
U=

The Table & The Query

® Suppose that our table is something like
one million rows and 100 columns (yes, we
are talking about big data)

® The query is like:
(f2>.9) and ((f8>.3) and (f8<.4))

® Selectivity is about | %

Ay, CONTINUUM
)
U=

Times for querying (seconds)

Database
G (create) (query)
NumPy 234 .97
sqlite3 454 28.9
sqlite3 (index) 140 2.87
BLZ 22.0 0.081

Run on Mac OSX, Core2 Duo @ 2.13 GHz

Ay, CONTINUUM
)
U=

Open Questions

® |f all the query engines store their data in-
memory, and written in C, why they have
such a large difference in performance!?

® Why SQLite3 performance is so poor, even
when using indexing?

® Why BLZ (essentially a data container on
steroids) can be up to 25x faster than

NumPy for querying?

Ay, CONTINUUM
)
U=

“Across the industry, today's chips are largely
able to execute code faster than we can feed
them with instructions and data.”

— Richard Sites, after his article

"It's The Memory, Stupid!”,
Microprocessor Report, 10(10),1996

The Starving CPU
Problem

Ay, CONTINUUM
)
U=

1000

nanoseconds

o
—

0.01

-y
0
0]
N

Memory Access [ime
vs CPU Cycle Time

o
8
® Memory Access Time ¢ CPU Cycle Time A Multi Core Effective Cycle Time

2002 -~

-
-‘--_-‘-— —
P Yl -
Q - QQ - et
e
S 9
@
O
o
v ——b
T
A 4
9
Q\Q
Y Y Y Y Y Y Y Y Y Y Y
-d -l -d -y - -d -t -l N N N
w0 (o] w0 w0 (] (o] (o] (] o o o
(o] (e0] (o0) ({e) ({e] (] ({e] ({e] o o o
(4] ~ w0 — w (4} ~J ({e] — w ($)}

Book in

2009

I\é: MORGAN&; CLAYPOOL PUBLISHERS

The Memory System

You Can’t Avoid It,
You Can’t Ignore It,
You Can’t Fake It

Bruce Jacob

SYNTHESIS LECTURES ON
CoMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

The Status of CPU
Starvation in 2014

® Memory latency is much slower (between
250x and 1000x) than processors.

® Memory bandwidth is improving at a better
rate than memory latency, but it is also
slower than processors (between 30x and

| 00x).

Ay, CONTINUUM
)
U=

CPU Caches to the
Rescue

® CPU cache latency and throughput
are much better than memory

® However: the faster they run the
smaller they must be (because of heat
dissipation problems)

Ay, CONTINUUM
)
U=

CPU Cache Evolution

Up to end 80’s 90’s and 2000’s 2010’s

Solid state disk

A

Capacity

paads

Level 3 cache
Level 2 cache

Level 2 cache
Level 1 cache

Level 1 cache

Ay, CONTINUUM
)
U=

numexpr

® numexpr is a computational engine for
NumPy that makes a sensible use of the
memory hierarchy for better performance

® Other libraries normally use numexpr
when it is time to accelerate large
computations

® PyTables, pandas and BLZ can all leverage
numexpr

Ay, CONTINUUM
)
U=

Computing with NumPy

Temporaries go to memory

—_— CPU _——
cache

a*b+cC

memory

a*b

Computing with Numexpr
Temporaries stay in cache

L

a b C a*b+c

cache

a*b

First Hint for Open
Questions

® BLZ is using numexpr behind the scenes so
as to do the computations needed for the

query

® |t creates less in-memory temporaries than
NumPy, and CPUs can do more work

Ay, CONTINUUM
)
U=

Second Interlude
Beyond numexpr:

Numba

Ay, CONTINUUM
)
U=

Numexpr Limitations

® Numexpr only implements element-wise
operations,i.e. ‘a*b’ is evaluated as:

for 1 1n range(N):
c[i] = a[i] * b[i]
® |n particular, it cannot deal with things like:

for 1 1n range(N):

c[i] = a[1-1] + a[1] * b[1]

Ay, CONTINUUM
)
U=

Numba: Overcoming
numexpr Limitations

® Numba is a JIT that can translate a subset
of the Python language into machine code

® |t uses LLVM infrastructure behind the
scenes

® Can achieve similar or better performance
than numexpr, but with more flexibility

CONTINUUM

o

How Numba Works

-

LLVM-PY

LLVM 3.1

Numba Example:
Computing a Polynomial

import numpy as np
import numba as nb

N

X
y

@nb.

def

10x1000%1000

np. linspace(-1, 1, N)
np.empty(N, dtype=np.float64)

autojit

poly(x, y):

for i in range(N):
yli]l = 0.25%x[1i]*%3 + 0.75%xx[i]*x2 + 1.5%xx[i] - 2
y[i]l = ((0.25%x[i] + 0.75)*xx[i] + 1.5)*x[i] - 2

poly(x, y) # run through Numba!

Ay, CONTINUUM
)
U=

Times for Computing (sec.)

Poly version (1) W
Numpy 1.086 0.505
numexpr 0.108 0.096
Numba 0.055 0.054
Pure C, OpenMP 0.215 0.054

Run on Mac OSX, Core2 Duo @ 2.13 GHz

Ay, CONTINUUM
)
U=

Numba: LLVM for Python

Python code can reach C
speed without having to
program in C itself

(and without losing interactivity!)

Ay, CONTINUUM
)
U=

Numba is Powering Blaze

® Blaze is Continuum Analytics' on-going
effort to provide efficient computation for
out-of-core and distributed data.

® Blaze is using a series of technologies for
this: DyND, Numba, BLZ

® Numba is at the computational core of
Blaze

Ay, CONTINUUM
)
U=

o

FlyPy Has Born
(Numba in 2014)

Complete reimplementation of
Numba (i.e. different computing
engine)

More powerful type system than
Numba

High Performance Computing for
High Level Language (Python)
CONTINUUM

~ga

FlyPy Highlights

SIMD support

Fused generators (restricted use)
Garbage collection

Efficient user-defined abstraction

Shared nothing architecture with
optional safe sharing cache latency

CONTINUUM

If a datastore requires all data to fit In
memory, it isn't big data

-- Alex Gaynor (in twitter)

Optimal Containers for
High Performance
Computing

Ay, CONTINUUM
)
U=

https://twitter.com/alex_gaynor

o

The Need for a Good
Data Container

Too many times we are too focused on
computing as fast as possible

But we have seen how important data
access Is

BLZ is data container for in-memory or
on-disk data that can be compressed

CONTINUUM

The Need for
Compression

® Compression allows to store more data
using the same storage capacity

® Sure, it uses more CPU time to compress/
decompress data

® But, that actually means using more wall
clock time?

Ay, CONTINUUM
)
U=

Blosc: (de)compressing
faster than memcpy()

Memory (RAM)
Bus Memory ¢
Decompression -

CPU Cache

Transmission + decompression faster than direct transfer?

Example of How Blosc Accelerates Genomics 1/O:

SegPack (backed by Blosc)

Compress Decompress
Sequences Sequences
256 1K 4K 16K 64K 256K 1M 4M 16M 64M 256 1K 4K 16K 64K 256K 1M 4M 16M 64M
1 | IS W I | S | [| | —]
12 — - memcpy
—¢— SeqPack

10 | —<— SeqPack + BLOSC| il -
N —¢~ BLOSC (level=4)
) —¢ zlib (level=6)
O Bl e -
5
D BT -
c
S
S A -
| -
c
e B i B g e L L —— —— oy

O_ | | | | | | |] B /I\I ----- /I\-”””I-/\”-I -------- L I””/\”I -----]
6, <% < %, % 6, <% \7@ % % 6, % < %, % 6, % ‘)O % %
o, B B % N O B R B Ty o % R % o 2 2 %y
FASTQ Bytes FASTQ Bytes
Source: Howison, M. (in press). High-throughput compression of FASTQ data

with SeqgDB.

IEEE Transactions on Computational Biology and Bioinformatics.

Second Hint for Open
Questions

® BlLZ does make use of Blosc for dealing
with compressed data transparently

® That means not only better storage usage,

but frequently better access time to the
data

Ay, CONTINUUM
)
U=

The btable object in BLZ

I l I I l I« Chunks

N NNt A7

« New row to append

* Columns are contiguous in memory

* Chunks follow column order

* Very efficient for querying (specially with a
large number of columns)

And a Third Hint...

e Bl /Z, differently from NumPy or SQLite3,
stores columns contiguously in-memory or

on-disk

® Again, BLZ is making use of the principles
of time and spatial locality for optimizing
the access to memory

® Blaze can leverage BLZ for storage and
improved |/O capabilities

Ay, CONTINUUM
)
U=

Summary

® Python is a perfect match for Big Data

® Nowadays you should be aware of the
memory system for getting good
performance

® Choosing appropriate data containers is of
the utmost importance when dealing with
Big Data

Ay, CONTINUUM
)
U=

References

® Blaze: http://blaze.pydata.org

® BLZ: http://blz.pydata.org

® Blosc: http://www.blosc.org

® Numba: http://numba.pydata.org

® FlyPy: https://github.com/ContinuumI|O/flypy

Ay, CONTINUUM
)
U=

https://github.com/ContinuumIO/flypy

“Across the industry, today’s chips are largely able to execute code
faster than we can feed them with instructions and data. There are no
longer performance bottlenecks in the floating-point multiplier or in
having only a single integer unit. The real design action is in memory
subsystems— caches, buses, bandwidth, and latency.”

“Over the coming decade, memory subsystem design will be the only
important design issue for microprocessors.”

— Richard Sites, after his article “It's The Memory, Stupid!”,
Microprocessor Report, 10(10),1996

Ay, CONTINUUM
)
U=

Thank you!

=

CONTINUUM

ANALYTICS

