

Samuel Garcia

CodeJam #6 – Jülich January 2014

neo : a 100% code jam project!

History :
● Discussions started in Freiburg 2009 (codejam #3).
● Neo 0.1 release some mouth. Coded almost alone.
● Neo 0.1 presented in Marseille 2010 (codejam #4) + discussion for neo 0.2
● Code sprint in Gif at Andrew's in 2011.
● Released on Feb 2012. neo 0.2
● Presentation Edinburgh 2012 (codemjam #5)
● Release neo 0.3 on June 2013
● Presentation Jülich 2014 (codemjam #6) + discussion for neo 0.4

Sorry for people that have seen this presentation several so much times.

What is neo ?

neo.core = a simple and intuitive set on objects for representing electrophysiological dataset
in memory for python language.

neo.io = a common layer for reading/writing in the cacophony of file formats.

Goals ?

What are main interests :
● Interoperability between projects (g-node, pynn, OpenElectrophy, SpykeViewer, Mozaik)
● file reader/writter : A 5 min. installable, multiplatfrom, and easy to play.
● No plotting, no analyzing

Dependencies ?

Few = numpy and quantities
Optional for some IOs = pytables , scipy, ...

Equivalent project
● Neuroshare (ddl provide commercial)
● for neuro imaging: nibabel (python)
● Biosig C/C++

Class tour

Class tour: Concept

3 types of objects:
● Data objects : AnalogSignal, SpikeTrain, EventArray, EpochArray
● Containers objects : Block, Segment
● Grouping objects : RecordingChannel, RecordingChannelGroup, Unit (ex Neuron)

All object have 3 types of attributes:
● Required (AnalogSignal.sampling_rate, AnalogSignal.t_start, ...)
● Recommended (AnalogSignal.name, ...)
● Free in annotations dict:

SpikeTrain, AnalogSignal, and AnalogSIgnalArray inherits python-quantities:directly
behave like np.array with units.

Class tour: schema

Class tour : definition

AnalogSignal: A regular sampling of a continuous, analog signal.
AnalogSignalArray: A regular sampling of a multichannel continuous analog signal. (2D NumPy array)
Spike: One action potential characterized by its time and waveform.
SpikeTrain: A set of action potentials (spikes) emitted by the same unit in a period of time (with optional waveforms).
Event and EventArray: A time point representng an event in the data, or an array of such time points.
Epoch and EpochArray: An interval of time representing a period of time in the data, or an array of such intervals.

Segment: A container for heterogeneous discrete or continous data sharing a common clock (time basis)
but not necessarily the same sampling rate, start time or end time. A Segment can be considered as equivalent
 to a "trial", "episode", "run", "recording", etc., depending on the experimental context. May contain any of the data objects.
Block: The top-level container gathering all of the data, discrete and continuous, for a given recording session.
 Contains Segment and RecordingChannelGroup objects.

RecordingChannelGroup: A group for associated RecordingChannel objects. This has several possible uses:
RecordingChannel objects of the same array.
Unit: A Unit gathers all the SpikeTrain objects within a common Block, possibly across several Segments,
that have been emitted by the same cell. A Unit is linked to RecordingChannelGroup objects from which it was detected.
This replaces the Neuron class in the previous version of Neo (v0.1).

Class tour : Use case

Class tour : Use case

IO tour

First interest to have same classes :
Same API to read/write data files.

What is this API ?
● For each format you have an IO class
● The IO class can read or write one or several neo objects.

All formats are really different so we need a flexible API:
● Axon = Block+Segment+AnalogSignal+EventArray
● Plexon = Segment+SpikeTrain+AnalogSignal
● RAW = AnalogSignal

IO : tour

IO tour : workflow

One class per format:

Different modes (file, dir, database, ...)

Examples

IO tour : workflow

Concept of readable/supported objects:

Class offer reading method for readable objects

All classes propose read() = read_all_block()

IO tour : workflow

Cascade option:

Lazy option:

Deferred loading (load_lazy_object):

Projects using neo

OpenElectrophy

PyNN

SpykeViewer Mozaik

G-Node

DataJongleur

Helmholtz

Projects that plan to use neo

Python MNE = EEG analysis and visualization

What is new 0.3

● Very similar to neo 0.2 (same model)
● New IO (ElphyIO, Brainware, Neuroscope, …)
● Performance improved.
● Small diff in neo.io:

● read_all_blocks
● Deferred loading with load_lazy_object.

● Code quality highly improved
● Travis CI
● Incredible clean up and test improvement thanks to heroic

work of Todd Jennings.

Plans for neo 0.4

● Better model “auto description”
● Harmonize class (have or inherits quanitities)
● Converge Scalar vs Array object (SpikeTrain vs Spike)
● Change in relationship (RC, RCG and Unit directly to Block) ??
● Python 3.3 for all IO.
● Attribute as properties (test compliance)
● Add stream reading for IO that are able to (memmap or hdf5 or blaze)
● Why not NeoBlazeIO ? (Francesc Alted : are you volunteers ?)

In preparation project

● A visualization module for neo object in vispy ? Any volunteers for
discussion ?

Pre Conclusion

Good point:
● Interoperability (5 projects)
● IO (23 class)
● API with relationship
● Domain specific (for name) but general design
● Force user to use quantities

Bad point:
● Model should simplified
● Not ready for “big data” (everything in memory, numpy)
● Force user to use quantities

Conclusion

● If your project generate data : write an IO for neo

● If your project manage signals and spikes in python : provide an interface to neo objects

● If your experimentalist colleague wants to read data set from commercial systems: neo.io

Post Conclusion

Like almost main of people here we send a submission for a paper in:
Frontier Python in Neuroscience II

Thank you to all editors!

If editor is in this room : why choosing a reviewer that code in Matlab ??? Is it for fun ?

Thanks to the the neo team

Samuel Garcia
Andrew Davison
Chris Rodgers
Pierre Yger
Luc Estabanez
Andrey Sobolev
Thierry Brizzi
Florent Jaillet
Philipp Rautenberg
Thomas Wachtler
Cyril Dejean
Robert Pröpper ← incredible effort for the project!
Domenico Guarino
Todd Jennings ← incredible effort for the project!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22

