CodedJam #6 — Julich January 2014

| i

N nm ™ || ||||\‘

| “‘_“‘;‘u‘ | H‘\“M‘”lmll 'JHU M u\\HUHHHI\ |'n1;.\ \\W W -u ‘L u“ ‘U HM“
l o UU leﬂ “,IM | b ‘

Samuel Garcia

-z
-

QNL UNIV=RSITZ D= LYON

~

<

neo : a 100% code jam project!

History :

 Discussions started in Freiburg 2009 (codejam #3).

* Neo 0.1 release some mouth. Coded almost alone.

* Neo 0.1 presented in Marseille 2010 (codejam #4) + discussion for neo 0.2
» Code sprint in Gif at Andrew's in 2011.

* Released on Feb 2012. neo 0.2

* Presentation Edinburgh 2012 (codemjam #5)

* Release neo 0.3 on June 2013

* Presentation Julich 2014 (codemjam #6) + discussion for neo 0.4

Sorry for people that have seen this presentation several so much times.

What is neo ?

neo.core = a simple and intuitive set on objects for representing electrophysiological dataset
in memory for python language.

neo.io = a common layer for reading/writing in the cacophony of file formats.

Goals ?

What are main interests :

* Interoperability between projects (g-node, pynn, OpenElectrophy, SpykeViewer, Mozaik)
« file reader/writter : A5 min. installable, multiplatfrom, and easy to play.

* No plotting, no analyzing

Dependencies ?

Few = numpy and quantities
Optional for some IOs = pytables , scipy, ...

Equivalent project

* Neuroshare (ddl provide commercial)
« for neuro imaging: nibabel (python)

* Biosig C/C++

Class tour

Block

Segment

AnalogSignal

IrregularlySampledSignal

RecordingChannel 4:[[

RecordingChannelGroup —

AnalogSignalArray —

Unit—)l{'*“ ."" '.' 1 1] il i H i %".ﬁiilﬁ]]'llﬁé"ﬁi'- b

_— SpikETraiﬂ e - ST 1] T T T m it i ,,'. i ng i

..

Spike T oo e a0

}_\/\ _-Epﬂch

EpochArray ——-li==ie== =z T = T |y =

Event EventArray

Class tour: Concept

3 types of objects:

» Data objects : AnalogSignal, SpikeTrain, EventArray, EpochArray

« Containers objects : Block, Segment

» Grouping objects : RecordingChannel, RecordingChannelGroup, Unit (ex Neuron)

All object have 3 types of attributes:

* Required (AnalogSignal.sampling_rate, AnalogSignal.t_start, ...)
« Recommended (AnalogSignal.name, ...)

* Free in annotations dict:

=>> seq = Segment()

==> seqg.annotate(stimulus="step pulse", amplitude=108%nA)
==> print(seg.annotations)

{"amplitude': array(10.8) * nA, 'stimulus': 'step pulse'}

SpikeTrain, AnalogSignal, and AnalogSignalArray inherits python-quantities:directly
behave like np.array with units.

»>>> import neo

=>> st = neo.SpikeTrain([3, 4, 5], units='sec', t_stop=10.08)
=>> print(st)

[3. 4. 5.] s

TP
RecordingChannel

Class tour: schema

(RecordingChannelGroup

channel indexes
channel names
name
description

index

coordinate *
name
description
file origin

file origin
\Jre- g

4 Block

~

file datetime
rec_datetime
index

name
description
file_origin

.."‘property

Unit

J

channel indexes
name
description

file origin

Segment

index
name
description
\ﬁ]e_origin

file datetime
rec datetime

=

(irregularlySampledSignal) (AnalogSignal | (AnalogSignalArray) | Spike SpikeTrain | [Event) (EventArray) Epoch EpochArray
times * signal * signal * time * times * time * times * time * times *
values * sampling rate *| | sampling rate * - t_start * label labels duration * durations *

t_start * t_start * waveform t_stop * label labels
name — — left sweep * — name name
description channel index channel indexes sampling rate *|| waveforms * description| | description name name
file origin name name name left sweep * file origin file origin description| | description
N vy - - N . o vy vy . . L.
description description description sampling rate * \ﬁ]e_orlgll’l \ﬁle_ongm)
file origin file origin file origin name
N vy S p. S -
description
file origin

Class tour : definition

AnalogSignal: Aregular sampling of a continuous, analog signal.

AnalogSignalArray: A regular sampling of a multichannel continuous analog signal. (2D NumPy array)

Spike: One action potential characterized by its time and waveform.

SpikeTrain: A set of action potentials (spikes) emitted by the same unit in a period of time (with optional waveforms).
Event and EventArray: A time point representng an event in the data, or an array of such time points.

Epoch and EpochArray: An interval of time representing a period of time in the data, or an array of such intervals.

Segment: A container for heterogeneous discrete or continous data sharing a common clock (time basis)

but not necessarily the same sampling rate, start time or end time. A Segment can be considered as equivalent
to a "trial", "episode", "run", "recording”, etc., depending on the experimental context. May contain any of the data objects.
Block: The top-level container gathering all of the data, discrete and continuous, for a given recording session.

Contains Segment and RecordingChannelGroup objects.

RecordingChannelGroup: A group for associated RecordingChannel objects. This has several possible uses:
RecordingChannel objects of the same array.

Unit: A Unit gathers all the SpikeTrain objects within a common Block, possibly across several Segments,

that have been emitted by the same cell. A Unit is linked to RecordingChannelGroup objects from which it was detected.
This replaces the Neuron class in the previous version of Neo (v0.1).

Class tour : Use case

RC = RecordingChannel

AS = AnalogSignal

RecordingChannelGroup

RC O
RC 1
RC 2

RC 3
RC 4

RC 5

RC 6
RC 7

Segment 0

Www

1

Segment 1

Segment 2

3
F
NE,LU
3
=

Recording
ChannelGroup 1 ChannelGroup 0

Recording

Class tour : Use case

RC = RecordingChannel
ST = SpikeTrain

RC 0O
RC 1
RC 2
RC 3
RC 4
RC 5
RC 6
RC 7

Unit 1

Unit 2

Unit 4
Unit 5
Unit 6

Segment 0

ST 0.0

Segment 1

ST 1.0

5T 1.1

aT 1,2

5T 1,3
ST 1.4
|

ST 1.5

ST 1.6

Segment 2

ST 2.0

ST 2,2

ST 2,2
ST 2.3

ST 2.4

ST 2.5
| I 1
ST 2.6

10 tour

First interest to have same classes :
Same API to read/write data files.

What is this APl ?
* For each format you have an |O class
 The IO class can read or write one or several neo objects.

All formats are really different so we need a flexible API:
« Axon = Block+Segment+AnalogSignal+EventArray
* Plexon = Segment+SpikeTrain+AnalogSignal
 RAW = AnalogSignal

10 : tour

Module Python 2 Python 3
AlphaOmegalO Yes No
AsciiSignallO Yes Yes
AsciiSpikeTrainIO Yes Yes
AxonlO Yes No
BlackrocklIO Yes No
BrainwareDamIO Yes Yes
BrainwareF32I0 Yes Yes
Brainware5rclO Yes Yes
ElanIO Yes No
HDF5IO Yes No
KlustakwikIO Yes No
MicromedIO Yes No
NeoMatlabIO Yes Yes
NeuroExplorerIO Yes No
NeuroscopelO Yes Yes
PickielO Yes Yes
PlexonIO Yes No
PyNNIO Yes Yes
RawBinarySignallO Yes Yes
Spike2I0 Yes Yes
TdtIO Yes No
WinEdrIO Yes Yes

WinWcpIO Yes Yes

10 tour : workflow

One class per format:

=>> from neo.io import MyFormatIO
=>> reader = MyFormatIQ(filename = "myfile.dat")
Different modes (file, dir, database, ...)

=>> from neo.io import MyFormatIO
=== print MyFormatIO.mode
"file'

Examples

io.PlexonlIO(fTilename="File_ plexon_1.plx")
io.TdtI0O(dirname="aep_0B5")

>>> reader
=== reader

10 tour : workflow

Concept of readable/supported objects:

=>> MyFormatIO.supported_objects
[Segment , Analog3ignal , SpikeTrain, Event, Spike]

=>> MyFormatIO.readable_objects
[Segment]

Class offer reading method for readable objects

=>> seqg = reader.read_segment()
=>> type(seg)
neo.core.Segment

All classes propose read() = read_all_block()

>>> bl = reader.read()
=== print bl[0].segments[8]
neo.core.Segment

e
e
e
e

Cascade option:

10 tour : workflow

seg = reader.read_segment(cascade=True)
print(len(seqg.analogsignals)) # this is N
seg = reader.read_segment(cascade=False)
print(len(seq.analogsignals)) # this 1is Zzero

Lazy option:

e
-
e
e
e

seg = reader.read_segment{lazy=False)
print(seg.analogsignals[@].shape) # this is N
seg = reader.read_segment{lazy=True)
print(seg.analogsignals[@].shape) # this is zero,
print(seg.analogsignals[@].lazy_shape) # this 1is

Deferred loading (load _lazy object):

s
s
o
2
2

lazy sig = seg.analogsignals[B8] # Empty signal

full sig

reader.load lazy object(lazy sig)

print(lazy sig.lazy shape, full sig.shape) # Identical

print(lazy sig.segment)
print(full sig.segment)

Has the link to the object "seg"
Does not have the link: None

N

the An

Projects using neo

PyNN

*‘!&
-
LY

L
n

SpykeViewer Mozaik

aanal Neuroinformat;
ordinating Faciliy

r%)ﬁ%
v/

wik

OpenElectrophy 8 s e

Overview This page is under construction. The Spike Sorting Evaluation site will be

Funded by
Publications launched here in April 2012
Teaching Welcome to the Spike Sorting Project - Algorithm Evaluation * I:’g?;.:’::‘;me"“m
People und Forschung
Extracellular recordings are a standard procedure to analyzing the activity of
MG, and other, neurons. A problem with this kind of recording is the simultaneous recording
. of not a single neuron but a small local population of neurons. [tis not straight- Hosted by
Tools and Services forward to reconstruct the single neuronal activities. To estimate the single
Events neuron activity (the so called spike train) from this multi neuron activity, spike
Data sorting is applied. Many different a\gumhn?sfur spike .sunm.g were proposed. i
However, despite many efforts to tackle this problem, itis still difficult to tell I_Mu UNIVER3ITAT
» Spike Sorting under which circumstances which spike sorting algorithm is the best. For a
Evaluation review please see

Einevoll GT, Franke F, Hagen E, Pouzat C, Harris KD (2011) Towards reliable
spike-train recordings from thousands of neurons with multielectrodes. Curr
Opin Neurobiol. 2011 Oct 22. [Epub ahead of print]

In May 2011, a workshop on Validation of Automatic Spike Sorting Methods
took place in Ski, Norway.

Helmholtz
Datadongleur

Projects that plan to use neo

Python MNE = EEG analysis and visualization

..

What is new 0.3

 Very similar to neo 0.2 (same model)
* New |O (ElphylO, Brainware, Neuroscope, ...)
» Performance improved.
« Small diff in neo.io:
* read_all blocks
» Deferred loading with load_lazy object.
» Code quality highly improved
e Travis Cl
* Incredible clean up and test improvement thanks to heroic
work of Todd Jennings.

Plans for neo 0.4

» Better model “auto description”

* Harmonize class (have or inherits quanitities)

» Converge Scalar vs Array object (SpikeTrain vs Spike)

» Change in relationship (RC, RCG and Unit directly to Block) ?7?

* Python 3.3 for all |O.

* Attribute as properties (test compliance)

* Add stream reading for IO that are able to (memmap or hdf5 or blaze)
* Why not NeoBlazelO ? (Francesc Alted : are you volunteers ?)

In preparation project

* A visualization module for neo object in vispy ? Any volunteers for
discussion ?

Pre Conclusion

Good point:

Interoperability (5 projects)

O (23 class)

API with relationship

Domain specific (for name) but general design
Force user to use quantities

Bad point:
* Model should simplified
* Not ready for “big data” (everything in memory, numpy)
* Force user to use quantities

Conclusion

« If your project generate data : write an IO for neo
* If your project manage signals and spikes in python : provide an interface to neo objects

* If your experimentalist colleague wants to read data set from commercial systems: neo.io

Post Conclusion

Like almost main of people here we send a submission for a paper in:
Frontier Python in Neuroscience i

Thank you to all editors!

If editor is in this room : why choosing a reviewer that code in Matlab ??? Is it for fun ?

Thanks to the the neo team

Samuel Garcia

Andrew Davison

Chris Rodgers

Pierre Yger

Luc Estabanez

Andrey Sobolev

Thierry Brizzi

Florent Jaillet

Philipp Rautenberg

Thomas Wachtler

Cyril Dejean

Robert Propper < incredible effort for the project!
Domenico Guarino

Todd Jennings < incredible effort for the project!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22

