
Parallel NEURON idioms:
Information exchange during setup

Debugging

Michael Hines

CodeJam 2014

Random numbers

Information exchange during setup

Results must be independent of
Number of processors
Distribution of cells

Information exchange during setup

Results must be independent of
Number of processors
Distribution of cells

A process is often interested in all the objects with
a particular property.

Information exchange during setup

Results must be independent of
Number of processors
Distribution of cells

A process is often interested in all the objects with
a particular property.

But it generally does not know where the objects are.

And the process that owns the object does not
know who is interested in it.

Information exchange during setup

Results must be independent of
Number of processors
Distribution of cells

A process is often interested in all the objects with
a particular property.

But it generally does not know where the objects are.

There is not enough memory in any one process to hold
a map of which ranks hold which objects.

And the process that owns the object does not
know who is interested in it.

Example: MPI_ISend/Recv spike exchange

Cells do not know which ranks are interested in its spikes.

Example: MPI_ISend/Recv spike exchange

Cells do not know which ranks are interested in its spikes.

Example: Source/Target connectivity

Reciprocal synapse connection description.
(mitral_gid, mdend_index, xm, granule_gid, gdend_index, xg, ...)

Construct a mitral => all the tuples with that mitral_gid.

Construct a granule => gather all the tuples with that
granule_gid.

Granules don’t know enough for construction of the tuples.

dest = ParallelContext.py_alltoall(src)

src and dest are a list of nhost pickleable objects.

src[j] on the ith rank will be copied to dest[i] on the jth rank.

Likely identical to mpi4py.MPI comm.alltoall(src, dest).

Basic exchange:

1 2 3 1 2 3

dest = ParallelContext.py_alltoall(src)

src and dest are a list of nhost pickleable objects.

src[j] on the ith rank will be copied to dest[i] on the jth rank.

Likely identical to mpi4py.MPI comm.alltoall(src, dest).

Essentially a wrapper for:

MPI_Alltoallv(s, scnt, sdispl, MPI_CHAR,
 r, rcnt, rdispl, MPI_CHAR, comm);

along with a preliminary
MPI_all2all(scnt, 1, MPI_INT, rcnt, 1, MPI_INT, comm);
in order to calculate rcnt and rdispl.

Basic exchange:

But:

No room for anyone to have a global map.

No one knows who holds what.

But:

No room for anyone to have a global map.

Solution: A rendezvous rank function:
rank = rendezvous(property)

usually

rank = gid % nhost

No one knows who holds what.

But:

No room for anyone to have a global map.

Solution: A rendezvous rank function:
rank = rendezvous(property)

usually

rank = gid % nhost

1) Everyone sends the keys they own to the rendezvous rank.

2) Everyone sends the keys they want to the rendezvous rank.

3) The rendezvous rank sends back to the owners,
 which ranks want which keys.
4) The owners send the objects to the ranks that want them.

No one knows who holds what.

Usually simplification is possible:

If the objects are small.

2) Everyone sends the keys they want to the rendezvous rank.

and objects

3) The rendezvous rank sends the objects to the ranks that
 want them.

1) Everyone sends the keys
they own to the rendezvous rank.

Usually simplification is possible:

If rendezvous(property) is known to be the source rank for
 all the keys (a−priori or by verifying with an all_reduce).

2) The owners send the objects to the ranks that want them.

1) Everyone sends the keys they want to the owner ranks.

1) The owners send the objects to the ranks that want them.

Usually simplification is possible:

If rendezvous(property) is known to be the destination rank
 for all the keys (a−priori or by verifying with an all_reduce).

What about RANDOM?

Results must be independent of
Number of processors
Distribution of cells

What about RANDOM?

Reproducible
Independent
Restartable

Associate a random stream with a cell.

Results must be independent of
Number of processors
Distribution of cells

What about RANDOM?

Use cryptographic transformation of several integers.
run number
stream number (cell gid)
stream pick index

Reproducible
Independent
Restartable

Associate a random stream with a cell.

Results must be independent of
Number of processors
Distribution of cells

Had been using MCellRan4

but only two integers to define x(n1, n2)

Use cryptographic transformation of several integers.
run number
stream number (cell gid)
stream pick index

Had been using MCellRan4

but only two integers to define x(n1, n2)

Use cryptographic transformation of several integers.
run number
stream number (cell gid)
stream pick index

Thanks! to Eilif Muller for suggesting:

Parallel Random Numbers: As Easy as 1, 2, 3

D. E. Shaw Research, New York, NY 10036, USA

We introduce several counter−based PRNGs: some based on
cryptographic standards (AES, Threefish) and some completely
new (Philox). All our PRNGs pass rigorous statistical tests
(including TestU01’s BigCrush) and produce at least 2^64
unique parallel streams of random numbers, each with period
2^128 or more.

http://www.deshawresearch.com/resources_random123.html

Salmon et al. SC11 (2011)

Use cryptographic transformation of several integers.
run number
stream number (cell gid)
stream pick index

Random123:

But we use 4 (two for the stream number).
Philox variant

Eight integers define x(n1, ..., n8)

Use cryptographic transformation of several integers.
run number
stream number (cell gid)
stream pick index

Random123:

But we use 4 (two for the stream number).

Good performance
10 million picks

ACG
MLCG

MCellRan4
numpy.random.rand(n)

Random123

0.329s
0.681s
0.150s
0.233s
0.201s

(Mersenne Twister)

Philox variant

Eight integers define x(n1, ..., n8)

from neuron import h
r = h.Random()
r.Random123(1,2)
r.negexp(1)

from neuron import h
r = h.Random()
r.Random123(1,2)
r.negexp(1)

n=100000000
dx = .01
y = h.Vector(n).setrand(r)
y = y.histogram(0,5,dx).rotate(−1,0)
x = y.c().indgen(dx/2,dx)
g = h.Graph()
y.line(g, x)

0 1 2 3 4 5
0

200000

400000

600000

800000

1e+06

0 0.005 0.01 0.015
985000

990000

995000

1e+06

nrnran123.h (abridged)

all generator instances share the global index
extern void nrnran123_set_globalindex(uint32_t gix);

extern nrnran123_State*
 nrnran123_newstream(uint32_t id1, uint32_t id2);

extern uint32_t nrnran123_ipick(nrnran123_State*);
 uniform 0 to 2^32−1

extern double nrnran123_dblpick(nrnran123_State*);
 uniform open interval (0,1)
 minimum value is 2.3283064e−10
 max value is 1−min

extern double nrnran123_negexp(nrnran123_State*);
 mean 1.0
 min value is 2.3283064e−10
 max is 22.18071

extern double nrnran123_negexp(nrnran123_State*);
 mean 1.0
 min value is 2.3283064e−10
 max is 22.18071

−log(1/2^32) 22.18071
−log(2/2^32) 21.487563

−log(10/2^32) 19.878125
−log(11/2^32) 19.782815

exp(−5)*2^32 28939262

−log(28939262/2^32) 5.0000000001
−log(28939263/2^32) 4.99999996

extern double nrnran123_negexp(nrnran123_State*);
 mean 1.0
 min value is 2.3283064e−10
 max is 22.18071

stateless (though the global index is still used)
extern nrnran123_array4x32
 nrnran123_iran(uint32_t seq, uint32_t id1, uint32_t id2);

Debugging
Results must be independent of

Number of processors
Distribution of cells

Debugging

1) GID and time of first spike difference.

Results must be independent of
Number of processors
Distribution of cells

Debugging

2) All spikes delivered to synapses of that Cell?
1) GID and time of first spike difference.

Results must be independent of
Number of processors
Distribution of cells

Debugging

2) All spikes delivered to synapses of that Cell?
3) When and what is the first state difference?

1) GID and time of first spike difference.

h.load_file(’prcellstate.hoc’)
if pc.gid_exists(gid):
 h.prcellgid(gid)

Results must be independent of
Number of processors
Distribution of cells

