

Marcel Stimberg, ENS Paris
marcel.stimberg@ens.fr

Dan Goodman, Harvard Medical School
Romain Brette, ENS Paris

Code generation in Brian 2
From mathematical model descriptions

to executable code

Who is Brian?

● A neural simulator, originally started by Romain
Brette and Dan Goodman in 2007 at ENS Paris

● Focuses on ease-of-use and flexibility, while
being “reasonably fast”

● Written in Python, free-and-open-source
● Brian2: Rewrite of core parts of Brian, more

consistent use of string-based model
descriptions and code generation

Goodman DF and Brette R (2009). The Brian simulator. Frontiers in Neuroscience

String-based model descriptions

Modelling neural activity

membrane
potential

(mV)

time (ms)

threshold

Leaky integrate-and-fire neuron

Modelling neural activity

Mathematical description:

When :

(v and I have units of volt)

Modelling neural activity

Brian description:

Modelling neural activity

membrane
potential

(mV)

time (ms)

threshold

Noisy leaky integrate-and-fire neuron
with adaptive threshold

Modelling neural activity

Brian description:

Modelling synaptic learning

Brian description:

Connecting neurons

String expressions referring to indices i and j:
● one-to-one connectivity: S.connect('i == j')
● local neighbourhood:
S.connect('abs(i – j) < 5')

● Random connectivity, avoiding self-connections:
S.connect('i != j',
 p='1./(sigma*sqrt(2*pi))* ↪
 exp(-(i – j)**2/(2*sigma**2)')

● Connecting cells depending on properties
(stored as state variables):
S.connect('sqrt((x_pre–x_post)**2) < 100*umetre')

Code generation

Code generation

● Event-based updates (impact of an incoming spike
on a neuron, reset after a spike, …) are formulated as
“abstract code”

● Continuous updates (neuronal dynamics, synaptic
dynamics, ...) are formulated as differential equations

 need to be numerically integrated→

 → yields abstract code
● Syntax and consistency checks (e.g. units) happen on

abstract code

Abstract code

Uses sympy for symbolic mathematics

Interface to code generation

Executable code generation (C++)

Executable “Code object”

Brian's “runtime” mode

Brian's “standalone” mode

We are already generating code for the core
computational parts – why not go all the way?
● Add memory allocation in target language
● Add simulation loop in target language

 → full simulation runs independent of Brian
● Also a possible starting point for simulations

that connect to special hardware, etc.

Standalone mode: usage

Standalone mode: usage

Standalone mode: generated files

Summary: code generation

● Combine easy-to-use Python interface with
efficient code

● Generating code doesn't mean to write a
Python-to-X compiler:
Model-specific code only uses a small subset
of Python (assignments, arithmetic expressions)

● Allows to run scripts on devices where it
couldn't run otherwise

Thanks for listening

Try it out (alpha version):
https://pypi.python.org/pypi/Brian2

https://github.com/brian-team/brian2

Read the docs:

http://brian2.readthedocs.org

Discuss/ask/comment:

brian-development@googlegroups.com

General information about Brian

http://briansimulator.org

Stimberg, Goodman, Benichoux, and Brette.
‘Equation-Oriented Specification of Neural Models for Simulations’.
Frontiers in Neuroinformatics 8: (2014): 6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

