Sequential multiscale simulations with *potfit*: First principles data for classical MD

Peter Brommer

Warwick Centre for Predictive Modelling School of Engineering, University of Warwick

JSC Workshop: From atoms to materials

http://www.warwick.ac.uk/wcpm

Peter Brommer (Warwick CPM)

Multiscale modelling with potfit

Quantum theory of electrons and nuclei

QM (QED) is a theory with enormous predictive power:

• Energy levels of hydrogen atom to a few ppm.

Solution to all our modelling needs? ... No.

"Sequential" Multiscale Modelling

Use proper simulation tool for each scale.

- Parameterise from small to large.
- No direct coupling between models.

essenceofescience.se/nobel-2013/

Outline

The Fundament

- Density Functional Theory
- Molecular Dynamics
- Force Matching
- Target Function Optimisation
- Force Calculation

Force matching beyond pair/EAM

- Angular dependent potentials for clathrates
- Tangney-Scandolo potentials for oxides
- Electron temperature dependent potentials

A sequence of approximations

Solve Schrödinger (Dirac) equation of electrons and nuclei

- for stationary nuclei (Born-Oppenheimer approximation),
- mapping the many-electron problem to many one-body problems,
- which use approximative functionals to represent XC,
- while core electrons are treated by pseudopotentials;
- wave functions are represented using plane wave basis set,
- cut off at finite energy and sampled on a finite grid;
- the problem is then solved by iteration to self-consistency.

Depending on some of the choices, further corrections are necessary.

What is Molecular Dynamics?

Equations of motion of a system of interacting particles are integrated numerically.

• Direct simulation of the basic laws of physics: Newton's (or Hamilton's) equations.

Needed

- Initial condition: structure model
- Equation of motion: model of the interactions

Big systems or long simulation times are feasible only with classical effective potentials.

Choice of interaction model depends on material to simulate

- Central pair potentials, EAM potentials for metals.
- Angular dependent potential (ADP), MEAM.
- Covalent potentials (Tersoff, Stillinger-Weber, ...).
- Potentials for nematic liquid crystals.
- Coulomb potential (Ewald method, Wolf summation).
- Dipolar interaction for oxides.
- Simulation of organic molecules: Force fields for polymer chains, water, amino acids,...

How to obtain effective potentials?

Potential serves to determine energies and forces \rightarrow determines the physics of the system!

- Depending on the system (metal, oxide, etc.), a suitable potential type must be chosen.
- Within such a potential family, the potential parameters determine the physical properties a particular material.
- The parameters are chosen such that the desired material properties are correctly reproduced.
- The material properties to be reproduced are often computed ab-initio, instead of measured experimentally.

 \Rightarrow Force Matching!

Ercolessi & Adams, Europhys. Lett. 26, 583 (1994)

Force Matching with potfit

Open source force matching code *potfit*

- Flexible and modular.
- Supports pair, (M)EAM, ADP potentials (metals).
- Oxide potentials.
- Electron-temperature dependent potentials (laser ablation).
- Interfaces to DFT and MD codes.

Widely used code

- 40 downloads/month,
- 50 citations with potentials,
- from more than ten distinct groups around the globe.

Brommer, Gähler, Model. Simul. Mater. Sci. Eng. 15, 295 (2007).

http://potfit.sourceforge.net/

Potential Generation

- Select potential model, starting potential.
- Select reference structures (100–200 atoms, MD simulation at various temperatures, strained structures).
- Oalculate forces, stresses, energies with ab-initio code.
- Optimize starting potential with potfit.
- Generate reference structures with new potential.
 ⇒ more realistic configurations.
- Test potential.

If results are not satisfying

- use more/different reference configurations,
- replace insufficient potential model.

and iterate procedure.

Peter Brommer (Warwick CPM)

Multiscale modelling with potfit

Uncertainties

Sources of uncertainty for force-matched potentials

Generic errors:

- "Imported" uncertainty: cannot beat DFT.
- Algorithmic uncertainty: global optimum?

Force Matching specific (structural & parameter) uncertainties:

- Bad reference data selection (parameter uncertainty).
- Wrong functional form (model bias).
- Overfitting (parameter uncertainty).
- Wrong potential model (model bias).

Properties of force-matched potentials:

- (Generally) good representability.
- Limited transferability.

Caveat emptor! (US\$2M NSF CDI grant, cf. https://openkim.org/).

Peter Brommer (Warwick CPM)

Multiscale modelling with potfit

JSC: atoms \rightarrow materials

Uncertainties

Peter Brommer (Warwick CPM)

Multiscale modelling with potfit

0 / 28

Force Matching: Optimisation problem

Find best parameter set for parameters α

Best?

- Minimise squared deviations compared to reference data (for each energy, force component, stress tensor component).
- Additional constraints? Add as sum of squares.
- Target function *Z*:

w

а

$$Z(\alpha) = Z_D(\alpha) + Z_C(\alpha), \qquad (1)$$

with $Z_D(\alpha) = \sum_{i=0}^m u_k (S_k(\alpha) - S_k^0)^2 \qquad (2)$
and $Z_C(\alpha) = \sum_{r=0}^{N_c} w_r (A_r(\alpha) - A_r^0)^2. \qquad (3)$

• Z: Highly nonlinear function, expensive to calculate.

Minimisation

Target function Z

Rough potential surface:

- Many competing minima.
- Varying importance of parameters.
- No analytical gradient.

How to find the optimum?

Local optimisation

Powell's algorithm

- Conjugate Gradient-like
- Effective in number of force calculations.
- Descent into *local* minimum.

Global optimisation

Simulated annealing

- Monte-Carlo inspired.
- Differential evolution
 - Inherently parallel.
- Both: many calculations.

Force calculation

Force calculation separated from optimisation

Forces calculated from tabulated interpolate of potentials.

- FC does not know about "parameters".
- Optimisation does not know about details of FC.
- \Rightarrow Separation of force calculation and optimisation.

Easy to add optimiser or potential model.

Efficient force calculations

MD: Atoms move, potentials fixed.

FM: Atoms fixed, potentials change.

- Use neighbour lists (initialised once).
- Pre-calculate spline point and interval (once).
- Update potential as needed.

Special case: tabulated or interpolated potential

Interpolated potentials can have many parameters (>100).

- No bias from particular functional form.
- Parameters have no meaning.

Monitor sampling points.

Confidence of sampling point values

Forces: evaluate potential functions and gradients.

• Both in training and use.

Training set and application: sample similarly.

Golden rule of force matching

Your potential will do what it is trained to do.

- Elastic constants: use strained structures.
- Surfaces: use surfaces.
- Low-T structure optimisation: ... few higher T.

Potentials for MD

o . . .

Realistic sampling of configurations essential:

- Ab-initio MD.
- Iteratively improved MD.

Pair potentials in metals

Insufficient description:

- Elastic constants (Cauchy pressure).
- Vacancy formation energy.
- Surface relaxation.

EAM potentials

Bond strength depends on environment – better suited to describe vacancies and other defects.

Directional dependence in pairwise sums

Additional contributions to energy:

$$E_{ADP} = E_{EAM} + \frac{1}{2} \sum_{i,\alpha} (\mu_i^{\alpha})^2 + \frac{1}{2} \sum_{i,\alpha,\beta} (\lambda_i^{\alpha\beta})^2 - \frac{1}{6} \sum_i \nu_i^2 \qquad (4)$$

$$\mu_i^{\alpha} = \sum_{j \neq i} u_{ij}(r_{ij}) r_{ij}^{\alpha}, \quad \lambda_i^{\alpha\beta} = \sum_{j \neq i} w_{ij}(r_{ij}) r_{ij}^{\alpha} r_{ij}^{\beta}, \quad \nu_i = \sum_{\alpha} \lambda_i^{\alpha\alpha}. \quad (5)$$

Multipole expansion for "charge" distribution

(dipole and quadrupole terms).

Application: Ge and Si cage compounds (Clathrates) – with and without Ba filling.

Type-I clathrates

Cage-like structure

Structure elements:

Icosahedral (20) or tetrakaidecahedral (24) cage filled with heavy rattling atom. Schopf, Euchner, Trebin, *Phys. Rev. B*, **89**, 214306 (2014)

Peter Brommer (Warwick CPM)

Multiscale modelling with potfit

PDOS ab-initio and with ADP potential

Tangney-Scandolo polarisable oxide model

Oxides not adequately described by point charges

Tangney-Scandolo model

- Coulomb interactions
- short-range repulsion (Morse-Stretch)
- polarisable oxygen (+short-range corrections)

Solve dipole moments self-consistently.

Wolf Summation

Linear scaling summation method for long-range interactions

- Use Ewald summation trick.
- Ignore reciprocal space part.

Works also for TS potential.

Brommer *et al., J. Chem. Phys* **132** 194109 (2010) Beck *et al., J. Chem. Phys* **135** 485401 (2011)

Peter Brommer (Warwick CPM)

Flexoelectricity in periclase (MgO)

Inversion symmetry excludes piezoelectricity

Flexoelectricity: $P_i = \mu_{ijkl} \partial_j \epsilon_{kl}$ needs inhomogeneous strain.

Roth et al., in HPC in Science and Engineering '13, ed. Nagel et al.

Peter Brommer (Warwick CPM)

Multiscale modelling with potfit

Lasers and covalently bound materials

Laser excites valence band electrons.

- Non-thermal occupation of bands.
- After thermalisation: band occupation corresponding to $T_e \gg T_l$.
- Interaction between atoms dependent on T_e.
- ⇒ Two-temperature model.
- ⇒ Electron-temperature dependent potentials.

ETD modified Tersoff potential for Si

Modified Tersoff potential:

$$V = \frac{1}{2} \sum_{i \neq j} f_C(r_{ij}) \left[V_R(r_{ij}) - b_{ij} V_A(r_{ij}) \right]$$
$$V_R(r_{ij}) = A \exp(-\lambda r_{ij}), \quad V_A(r_{ij}) = B \exp(-\mu r_{ij}), \quad b_{ij} = (1 + (\zeta_{ij})\eta)^{-\delta}$$
$$\zeta_{ij} = \sum_{k \neq i,j} f_C(r_{ij}) g(\cos \theta) \exp(\alpha (r_{ij} - r_{ik})\beta).$$

with angular dependent term $g(\cos \theta)$ and cut-off function $f_C(r)$. Make certain parameters explicitly temperature dependent, e.g.

$$A = A(T_e) = \sum_{n=0}^6 a_n (k_B T_e)^n$$

Ablation of 1 μ Si film

Setup

- 1124 \times 4.34 \times 4.34 nm³
- 1 024 000 atoms
- 750 finite difference cells.

Laser fluence 0.12 J/cm²

Peter Brommer (Warwick CPM)

People & Funding

U Stuttgart: Institut für Theoretische und Angewandte Physik †

- Hans-Rainer Trebin
- Franz G\u00e4hler (now U Bielefeld)
- Johannes Roth (IMD)
- Daniel Schopf (potfit, Ph.D.)
- Alexander Kiselev (Ph.D.)

Open source

potfit home at http://potfit.sourceforge.net

Wiki, Download, Mailing List

Funding

DFG SFB 384, 716

Peter Brommer (Warwick CPM)

Sequential multiscale modelling

Build large-scale models bottom-up.

- Algorithmically straightforward (no coupling).
- Standard interfaces to standard simulation codes.
- Uncertainty propagation through the scales.

Force Matching

Extending atomistic simulations to new materials:

- Preserve DFT precision to larger systems, longer times.
- Foundation for other atomistic and meso-scale problems.

Essential part of multi-scale modelling stack.

