

redoxSQE Toward modeling redox reactions with empirical potentials

Martin Müser

Wolf Dapp

Razvan Nistor Columbia

Mitglied der Helmholtz-Gemeinschaft

Outline

Introduction and motivation

- fixed / variable charge models (QE, AACT, SQE)
- split-charge equilibration (SQE)
- ions and charges, RedoxSQE

RedoxSQE

Proof of concept application: contact electrification
Proof of concept application: atomistic battery discharge

Why variable charge methods?

Continuous

transition

(effective) charge of a given atom unknown before simulation

Si atom in bulk SiO₂: Q(formal) = 4eQ(effective) ≈ 2.6e

Si-SiO₂ interface

Si atom in Si bulk (with SiO₂ interface): Q(formal, or in pure Si) = 0e Q(effective) << 1e

For any chemically heterogeneous system **must adjust charges on the fly** (in particular for redox)

Justification / falsification of variable-charge models

Bottom-up approach

relate terms in the models to matrix elements or electronic densities of a DFT formulation for SQE: Verstraelen *et al.;* JCP 138, 074108 (2013), see his talk later

Top-down approach

match *ab initio* computed charges & polarizabilities or experimental data

investigate generic properties of the model, i.e., what are generic (macroscopic) **response functions**

Charge equilibration models

$$V = V_{\text{short}} \qquad \text{short-rad} \\ + \sum_{i,j} \frac{Q_i Q_j}{4\pi\epsilon_0} J(|r_{i,j}|) \qquad \text{(screener Couloms)} \\ + \sum_i \chi_i Q_i \qquad \text{electron} \\ + \sum_i \frac{\kappa_i}{2} Q_i^2 \qquad \text{atomic I} \end{cases}$$

ened) mb conegativity + U ic hardness +

 $Q_i = \sum_j q_{i,j}$

charge is shared across a bond

Charge equilibration models

 $V = V_{\rm short}$ $+\sum_{i,j}rac{Q_iQ_j}{4\pi\epsilon_0}J(|r_{i,j}|)$ AACT (MM3-FF) $\sum_{i} \chi_{i}Q_{i}$ $+\sum_{i} \frac{\kappa_i}{2}Q_i^2$ $+ \sum_{i,j,j < i} \frac{\kappa_{i,j}}{2} q_{i,j}^2$

$$Q_i = \sum_j q_{i,j}$$

charge is shared across a bond

Comparison between generic properties of QE and AACT

	atom-based QE (e.g., reax-FF)	bond-based QE (e.g., MM3-FF)	
oligomer polarizability	correct	wrong	
skin depth	correct	wrong	
dissociation	wrong	correct	
polymer polarizability	wrong	correct	
dipoles of long alcohol chains	wrong	correct	
materials	only metals	only ultra low-k	
	zero bond hardness	zero atomic hardness	

Charge equilibration models

7

Comparison between generic properties of QE, AACT, and SQE

	atom-based QE (e.g., reax-FF)	bond-based QE (e.g., MM3-FF)	SQE
oligomer polarizability	correct	wrong	correct
skin depth	correct	wrong	correct
dissociation	wrong	correct	correct
polymer polarizability	wrong	correct	correct
dipoles of long alcohol chains	wrong	correct	correct
materials	only metals	only ultra low-k	any ε _r
errors for partial charges	30%	30%	10%

... but SQE still cannot describe

"true" ions, nor permanent charge transfer...

like any other method using energy minimization based **uniquely** on atomic positions, including some so-called "reactive" force fields

... subject of one of oldest basic-science experiments...

Thales of Miletus 624—546 B.C. ... replaced mythology with empiricism

...still very relevant, for instance in copiers / laser printers

... enter redoxSQE

M. H. Müser, Eur. Phys. J. B 85, 135 (2012)

Introduce **oxidation state** n_i as a discrete state variable

$Q_i = n_i e + \sum_j q_{i,j}$

not subject to bond hardness describes **ionization / excess electrons**

trial redox moves (incrementing n_i , decrementing n_j) are accepted according to a Metropolis condition on energy.

Consequences of "oxidation state"

Landau-Zener dynamics when dissociating NaCl

energy levels are shifted in the presence of polarizable

redoxSQE allows switching between Landau-Zener levels

Toward the simulation of tribo-electricity

"amber rod"

STATIC ELECTRICITY

"Yeah, really funny... rub me on the carpet and then put me in the shipping box... You will pay for this!"

TheFunnyPicsPage.com

Proof-of-concept application: contact electrification

metals

neutral bodies are brought into contact, and back

without RedoxSQE: bodies neutral again upon separation

dielectrics

fractional charges are exchanged upon contact reality / with RedoxSQE: parts retain charge after separation

QE/DFT: long-range charge transfer, no neutral bodies possible (without artificial constraints)

AACT/SQE: parts neutral before *and* after separation

redoxSQE: despite identical
atomic positions, forces are
different before / after contact

 → captures history dependence
 (also: polarization charges, metallic charge behavior, ...)

Dapp & Müser, EPJB **86**, 337 (2013)

16

Parametrizing redoxSQE for NaCl

Proof-of-concept application: atomistic battery discharge

http://en.wikipedia.org/wiki/Galvanic_cell

Proof-of-concept application: atomistic battery discharge

Proof-of-concept application: atomistic battery discharge

Model battery discharge

Mitglied der Helmholtz-Gemeinschaft

Model battery discharge

Mitglied der Helmholtz-Gemeinschaft

Pulsed discharge and recharge

pulsed discharge:

- relaxation effects, recovery of voltage
- self-discharge in the case of long storage
- typical usage case: communication devices

recharge:

- overshoots nominal voltage (OCV)
- degeneration across multiple cycles

comparison: charge curve LiFePO₄ battery, nominal voltage **3.6V**

Caveats

presently: proof-of-concept only

- microscopic battery: ≈ 1000 atoms, in monolayer setup
- "Lennard-Jonesium"+RedoxSQE,
 not parametrized for specific material (parameters ~ Cu)
- short-range interactions two-body only

reference values

nano battery:

("Cu" battery with liquid salt electrolyte, except for atomic hardness)

- 1.3 V open circuit voltage,
- 0.7 nA mean current,
 - $0.7 \ G\Omega$ external resistance

"scaled" battery:

- 1.3 V OCV,
- 7 mA ≈ 60 Ω,
- 2400 mAh capacity,
- 2 Wh energy

Alkaline / NiMH:

- 1.5 / 1.2 V OCV,
- 30 mA ≈ 40 Ω,
- 2800 mAh,
- ~ ≈3 Wh

outlook: electrochemical memory cells see also talk by Alejandro Strachan tomorrow

Dapp & Müser, in preparation

Time

outlook: electrochemical memory cells see also talk by Alejandro Strachan tomorrow

Summary and conclusions

Original split-charge method (SQE):

- reliable and transferable charges for molecular systems
- tunable dielectric constant and penetration depth
- correct scaling of dipoles and polarizability with chain length

RedoxSQE

- can model "true" ions (zwitterions) & time dependence
- describes redox reactions
- extends applicability of SQE to non-equilibrium situations, such as tribo-electricity, Galvanic cells
- reproduces generic characteristics of battery discharge and allows to study electrolyte-electrode interface, etc.