Grain boundary sliding 000000000 Infiltration of Co

Summary and outlook

Study of grain boundary deformation mechanisms in cemented carbides using a model potential for the W-C-Co system

Force Fields 2014

Gren M., Petisme M., and Wahnström G.

Department of Applied Physics, Chalmers University of Technology

Workshop on Force Fields: From Atoms to Materials, Monday 3 November, 2014

Background	MD and interatomic potentials	Grain boundary sliding	Infiltration of Co	
0000	00	0000000000	0000000000	
Outline	۲			

- WC-Co and high *T* plastic deformation by grain boundary sliding and Co infiltration
- 2 MD and interatomic potentials
- Grain boundary sliding
- Infiltration of Co
- 5 Summary and outlook

MD and interatomic potentials 00 Grain boundary sliding 000000000 Infiltration of Co

Summary and outlook

Cemented carbide

• Pure WC hard and brittle

Background	
0000	

Grain boundary sliding 0000000000 Infiltration of Co

Summary and outlook

- Pure WC hard and brittle
- Adding ductile metal binder
 ⇒ unique combination of hardness and toughness

Background ●000

Grain boundary sliding 0000000000 Infiltration of Co

Summary and outlook

- Pure WC hard and brittle
- Adding ductile metal binder
 ⇒ unique combination of hardness and toughness
- Manufactured using liquid phase sintering

Background ●000

Grain boundary sliding 0000000000 Infiltration of Co

Summary and outlook

- Pure WC hard and brittle
- Adding ductile metal binder
 ⇒ unique combination of hardness and toughness
- Manufactured using liquid phase sintering
- Used for *e.g.* metal cutting, rock drilling, wear parts, etc.

Background ●000

Grain boundary sliding 000000000 Infiltration of Co

Summary and outlook

- Pure WC hard and brittle
- Adding ductile metal binder
 ⇒ unique combination of hardness and toughness
- Manufactured using liquid phase sintering
- Used for *e.g.* metal cutting, rock drilling, wear parts, etc.

Typical microstructure, \sim 6 wt-% Co (WC: light, Co: dark)

Background	
0000	

Grain boundary sliding 0000000000 Infiltration of Co

Summary and outlook

Cemented carbide

Plastic deformation of bulk material often limits tool life at high T

Typical microstructure, ${\sim}6$ wt-% Co (WC: light, Co: dark)

Background 0●00

Grain boundary sliding

Infiltration of Co

Summary and outlook

Cemented carbide

Plastic deformation of bulk material often limits tool life at high T

Suggested mechanism:

 Rigid WC skeleton broken up and WC/WC grain boundaries infiltrated by Co

Typical microstructure, \sim 6 wt-% Co (WC: light, Co: dark)

Background 0●00

Grain boundary sliding 000000000 Infiltration of Co

Summary and outlook

Cemented carbide

Plastic deformation of bulk material often limits tool life at high T

Suggested mechanism:

- Rigid WC skeleton broken up and WC/WC grain boundaries infiltrated by Co
- Deformation occurs by grain boundary sliding (gbs) facilitated by Co infiltration

Typical microstructure, \sim 6 wt-% Co (WC: light, Co: dark)

WC–Co undergoes gradual ductile–brittle transformation

*Östberg *et al.* Int. J. Refract. Met. H. **24**, 135 (2006)

WC–Co undergoes gradual ductile–brittle transformation

*Östberg *et al*. Int. J. Refract. Met. H. **24**, 135 (2006)

Experimental support for gbs (3-point bending and SEM)*

Co lamellae seen in deformed sample

*Östberg *et al.* Int. J. Refract. Met. H. **24**, 135 (2006)

Background 0000	MD and interatomic potentials 00	Grain boundary sliding 000000000 0	Infiltration of Co 0000000000	

We have studied gbs and Co infiltration using molecular dynamics with an interatomic potential for the W-C-Co system.

Background 0000	MD and interatomic potentials •0	Grain boundary sliding 0000000000 0	Infiltration of Co 0000000000	
Interato	omic potentials			

• We use an *analytical bond order potential* (ABOP) of Tersoff–Brenner type with 9 parameters per interaction type:

$$E_{ ext{abop}} = \sum_{i>j} \left\{ V_{ ext{repulsive}}(r_{ij}) - b_{ij} V_{ ext{attractive}}(r_{ij})
ight\}$$

where b_{ij} includes environmental dependence, including angularity.

- For the W–C system we use the parameters of Juslin et al.*
- We have developed Co parameters using standard ABOP approach**
- T_m for Co well described, 1750 \pm 50 K (1768 K exp.)

^{*} Juslin N. et al., J. Appl. Phys. 98, 12, 123520 (2005)

^{**} Albe K. et al., Phys. Rev. B 65, 195124, (2002)

Summary and outlook

Interatomic potentials

- Co-C and Co-W parameters developed using mainly force-matching[†] to first-principles DFT data[‡]
- C and W dissolved in Co
- WC/Co interfaces
- Segregation energies for Co in WC grain boundaries

[†]F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994)

[‡] M.V.G. Petisme, S.A.E. Johansson, G. Wahnström, Proc. Int. Plansee Sem. 2 (2013).

Background 0000	MD and interatomic potentials 00	Grain boundary sliding •000000000 0	Infiltration of Co 0000000000	

Grain boundary sliding

MD and interatomic potential:

Grain boundary sliding

Infiltration of Co

Summary and outlook

Choosing model grain boundaries

- Most common planes in WC/WC grain boundaries are basal and prismatic*
- We also utilize DFT to determine interface segregation.** In this case we use the coherent approximation and need to use grain boundaries with a low Σ.

^{*}Kim, C.-S. and Rohrer, G. S., Interface Sci. 12, 19 (2004)

^{**} Petisme, M.V.G., Johansson, S.A.E., and Wahnström, G. (Unpublished)

MD and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Choosing model grain boundaries

- Most common planes in WC/WC grain boundaries are basal and prismatic*
- We also utilize DFT to determine interface segregation.** In this case we use the coherent approximation and need to use grain boundaries with a low Σ.
- \Rightarrow We choose:
 - $\Sigma 2$ tilt grain boundary with one (0001) and one (1210) plane
 - Σ 4 tilt grain boundary with one ($\overline{1}100$) and one ($10\overline{1}2$) plane

*Kim, C.-S. and Rohrer, G. S., Interface Sci. **12**, 19 (2004) **Petisme, M.V.G., Johansson, S.A.E., and Wahnström, G. (Unpublished)

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Misfit in grain boundary

In both model grain boundaries ($\Sigma 2$ and $\Sigma 4$) there is one direction with perfect match and one with a misfit arising from $a \neq c$.

In both model grain boundaries ($\Sigma 2$ and $\Sigma 4$) there is one direction with perfect match and one with a misfit arising from $a \neq c$.

Clean Σ2 grain boundary at 300 K

In both model grain boundaries ($\Sigma 2$ and $\Sigma 4$) there is one direction with perfect match and one with a misfit arising from $a \neq c$.

Clean Σ2 grain boundary at 300 K

MD and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Model system $1 - \Sigma 2$ with misfit

- $\Sigma 2 90^{\circ}$ [$\overline{1}010$] tilt grain boundary
- Sliding at 0.1 Å/ps
- Thermostated layers
- Strain due to commensurate cell ~ 0.4 %
- $\bullet~\sim$ 25,000 atoms

MD and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Model system $2 - \Sigma 4$ with misfit

- Simulation done as for Σ2.
- Σ4 60° [1210] tilt grain boundary
- Strain due to commensurate cell ~ 0.6 %
- ~ 100,000 atoms

Background	

Grain boundary sliding

Infiltration of Co

Summary and outlook

Simulation methodology

- Molecular Dynamics (MD) as implemented in the LAMMPS code
- Constant sliding speed 0.1 Å/ps imposed away from interface
- Timestep 1 fs, simulation time 1 ns.
- Zero pressure normal to the interface
- Measure resulting shear stress using

$$\sigma_{ij} = \frac{1}{N} \sum_{k} \beta_{ij}^{k} \quad \text{where} \quad \beta_{ij}^{k} = -\frac{1}{V_{k}} \Big\{ m v_{i} v_{j} + \frac{1}{2} \sum_{\ell \neq k} f_{i}^{k\ell} r_{i}^{k\ell} \Big\}$$

MD and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Results, clean GB as an example

 Shear stress as function of interfacial displacement

MD and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Results, clean GB as an example

- Shear stress as function of interfacial displacement
- We use 6 simulations to calculate averages and error bars

MD and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Results, clean GB as an example

Results as function of Co content and T

Results as function of Co content and T

Observations

Background MD and interatomic potentials Grain boundary sliding Infiltration of Co Summa

Results as function of Co content and T

Observations

 Co infiltration significantly facilitates gbs kground MD and interatomic potentials Grain boundary sliding

Infiltration of Co

Summary and outlook

Results as function of Co content and T

Observations

- Co infiltration significantly facilitates gbs
- A few layers, ~ 1 nm, of Co are required to facilitate gbs

round MD and interatomic potentials Grain boundary sliding

Infiltration of Co

Summary and outlook

Results as function of Co content and T

Observations

- Co infiltration significantly facilitates gbs
- A few layers, ~ 1 nm, of Co are required to facilitate gbs
- Submonolayer Co segregation strengthens the grain boundary

Plateau stress, with and without Co film

• Significantly reduced plateau stresses with Co film: A few GPa \rightarrow a few tenths of a GPa

Plateau stress, with and without Co film

- Significantly reduced plateau stresses with Co film: A few GPa \rightarrow a few tenths of a GPa
- Same plateau shear stress for Co film at 2000 K (Co liquid)

Quotient of stresses with and without Co film

Taking the quiotient of the previous stresses:

Quotient of stresses with and without Co film

Taking the quiotient of the previous stresses:

 $\bullet ~\sim 20$ times lower shear stresses with 12 ML solid Co film compared to 0.5 ML Co

Quotient of stresses with and without Co film

Taking the quiotient of the previous stresses:

- $\bullet ~{\sim}20$ times lower shear stresses with 12 ML solid Co film compared to 0.5 ML Co
- $\bullet \ {\sim}100$ times lower shear stresses with 12 ML molten Co film compared to 0.5 ML Co

Background	

Summary

- Grain boundaries infiltrated by Co (12 monolayers) requires an order of magnitude smaller stresses to slide for $T < T_m^{Co}$
- For $T = 2000 \text{ K} > T_m^{\text{Co}}$ the stresses are two orders of magnitude smaller
- A film of 6 Co layers (${\sim}1$ nm) is enough to facilitate gbs

Background 0000	MD and interatomic potentials 00	Grain boundary sliding 0000000000 0	Infiltration of Co •00000000	

Infiltration of Co into WC/WC grain boundaries: A work in progress

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

System

- \bullet Bicrystal with WC/WC grain boundary
- Reservoir of Co for infiltration
- Wedge in the WC/WC grain boundary filled with Co to aid infiltration

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

System

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Simulation method

- Constant strain rate of 0.01 ns⁻¹ perpendicular to grain boundary
- Zero pressure in grain boundary plane
- 2000 K
- Periodic boundary conditions in all directions

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co 000000000

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

1.5 ns

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

4.5 ns

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

7.5 ns

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

10.5 ns

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

13.5 ns

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant strain rate

- \bullet Peak stress matches reference simulation without Co reservoir and wedge, $\sim 25~{\rm GPa}$
- Grain boundary separates before Co infiltrates
- Need larger time-scales to see infiltration
- W and C in WC/Co interfaces diffuse into the Co reservoir:

Due to a driving force from the fitting of the potential

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Simulation method

- Constant stress perpendicular to grain boundary
- Zero pressure in grain boundary plane
- 2000 K
- Periodic boundary conditions in all directions

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 20 GPa)

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 20 GPa)

0.15 ns

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 20 GPa)

0.3 ns

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 20 GPa)

0.45 ns

1D and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 20 GPa)

0.6 ns

1D and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 20 GPa)

0.75 ns

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 20 GPa)

0.9 ns

1D and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 20 GPa)

0.92 ns

1D and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 20 GPa)

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 10 GPa)

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 10 GPa)

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Constant stress (\sim 10 GPa)

ID and interatomic potentials

Grain boundary sliding

Infiltration of Co

Summary and outlook

Infiltration of Co into $\Sigma 2$ grain boundary

Conclusion

- Molecular dynamics cover to small time scales to see infiltration
- Need to force the infiltration of Co
- \Rightarrow Monte Carlo simulations

୦୦ ୦୦ ୦୦୦୦୦	

Infiltration of Co

Summary and outlook

Summary

Infiltration

- MD cover to small time scales to see infiltration in WC-Co
- Diffusion of W and C into Co can be studied using MD

Grain boundary sliding

- Grain boundaries infiltrated by Co (12 monolayers) requires an order of magnitude smaller stresses to slide for $T < T_m^{Co}$
- For $T = 2000 \text{ K} > T_m^{\text{Co}}$ the stresses are two orders of magnitude smaller
- A film of 6 Co layers (\sim 1 nm) is enough to facilitate gbs

Background	MD and interatomic potentials	Grain boundary sliding	Infiltration of
0000	00	0000000000	000000000

Summary and outlook

Outlook

• Further investigate Co infiltration, maybe use Monte Carlo to force Co into the grain boundary.

Background 0000	MD and interatomic potentials	Grain boundary sliding	Infiltration of Co

Summary and outlook

Outlook

• Further investigate Co infiltration, maybe use Monte Carlo to force Co into the grain boundary.

Thank you for listening!