

John von Neumann Institute for Computing

Systematic Analysis and Extension of Embedded Atom Methods

J. Jalkanen¹ and M. H. Müser^{1,2}

¹Jülich Supercomputing Centre, Institute for Advanced Simulation, FZ Jülich GmbH, Jülich ²Department of Materials Science and Engineering, Universität des Saarlandes, Saarbrücken

Introduction

 Embedded-atom method-type force fields (EAM) are among the most popular classical model potentials for pure metals and alloys

$$E_i = \frac{1}{2} \sum_{j \neq i} V(\vec{r}_{ij}) + F\left[\sum_{j \neq i} \rho(\vec{r}_{ij})\right]$$

✓ EAM composed of core repulsion V, embedding energy Fand charge density ρ . V and F can be chosen to reproduce a given equation of state (EOS).

Introduction

✓ Some advantages:

For exponential V and ρ , and $F \sim -\rho^{\alpha}$, (0 < α < 1),

- Dissociation energy per atom E_0 scales as Z^{α}
- Vacancy energies ~ $Z[Z^{\alpha} (Z-1)^{\alpha}] \sim \alpha Z^{\alpha} ...$
- Nearest neighbor distances $a_0 \sim \log(Z/Z_0)$
- ✓ Some challenges:
 - Charge distribution is rigid, no electrostatics
 - Directionality of bonding
 - FCC/HCP energy difference due to long range part

Motivation

- Transferability of EAM between different coordination environments?
- Ingredients yielding the highest transferability?
- How to overcome the limitations?
- How much complexity is really needed?

Methods

- \checkmark Set of clusters, quasi-1D chains, layers and 3D lattices is constructed
- ✓ All systems are charge transfer free
- ✓ Ab initio copper taken as fictional
- reference material $\checkmark E_0$, a_0 and $S = \frac{\partial^2 E(a)}{\partial a^2}$ from $|a=a_0|$ theory (DFT) calculations
- ✓ Some systems metastable or purely hypothetical
 - Quantum Espresso DFT suite 5.0.3
 - Hartwigsen-Goedecker-Hutter pseudopotential with semicore state in valence
 - Perdew-Burke-Ernzerhof exchange-correlation functional
 - 16x16x16 k-point grid
 - Planewave cut-off 200 Ry

Methods

 \checkmark Gupta potential¹ is chosen as reference model:

 $V(r) = V_0 \exp(-r/\sigma_R), \ \rho(r) = \exp(-r/\sigma_O), \ F[\overline{\rho}] = -A\overline{\rho}^{1/2}$

- Charge density, core repulsion and embedding function are varied one at a time
- ✓ Parameters fitted by optimizing a fitness function $\chi^2(E_0, a_0, S)$

• ¹*R. P. Gupta, Phys. Rev. B*, **23**, 6265, (1981)

Ab initio nearest neighbor distances

Ab initio dissociation energies

Gupta nearest neighbor distances

 Bulk underestimated, low dimensions overestimated

Gupta dissociation energies

Core Repulsions

Embedding Functions

$F(\bar{\rho}) \underset{(Gupta)}{Square root} \rho \log \rho \qquad Taylor polynomial O(\rho^4) \qquad Rose-Vinét Birch-Murnaghan Murnaghan \\ \chi 0.67 \qquad 0.92 \qquad 1.17 \qquad 0.75 \qquad 0.57$		$E_i =$	$\frac{1}{2} \sum_{j \neq i} V$	$V(\vec{r}_{ij}) + F$	$\sum_{j\neq i}\rho(\bar{r}$	$\left[ij \right]$
χ 0.67 0.92 1.17 0.75 0.57	F(<i>ρ</i>)	Square root (Gupta)	ρ log ρ	Taylor polynomial Ο(ρ⁴)	Rose-Vinét	Birch- Murnaghan
	χ	0.67	0.92	1.17	0.75	0.57

 χ^2 = 1 when $\Delta a/a_{DFT} \sim 1\%$, $\Delta E/E_{DFT} \sim 5\%$ and $\Delta S/S_{DFT} \sim 15\%$.

Charge Densities

Charge Densities

Charge Density Gradient Corrections

- Stott and Zaremba¹ proposed gradient corrections already in 1980
- Modified Embedded-Atom Method² charge density can also be cast in a similar form
- ✓ We denote

$$\rho_{\alpha_1,\dots,\alpha_n} = \sigma_Q^n \frac{\partial^n \rho(r)}{\partial \alpha_1 \cdots \partial \alpha_n}$$

n n

where each $\alpha_i \in \{x, y, z\}$

- ¹M. J. Stott and E. Zaremba, Phys. Rev. B, **22**, 1564, (1980)
- ²M. I. Baskes, J. S. Nelson and A. F. Wright, Phys. Rev. B, 40, 6085, (1989)

Charge Density Gradient Expansions of Energy Functional

 Energy functional can be expanded in terms of rotation- and reflection symmetric combinations of

 $ar{
ho}_{lpha_1,\ldots,lpha_N}$,

where it has been denoted

$$\overline{\rho}(\vec{r}) = \sum_{j} \rho(\left|\vec{r}_{j} - \vec{r}\right|)$$

Table 1: All invariants of ranks 2 and 4

 $\overline{\rho}_{\alpha_{1}} \overline{\rho}_{\alpha_{1}} \equiv SG \qquad (SG)^{2} \equiv SG2 \\ \overline{\rho}_{\alpha_{1}\alpha_{1}} \equiv H \qquad H^{2} \equiv H2 \\ SGH \\ \overline{\rho}_{\alpha_{1}} \overline{\rho}_{\alpha_{1}\alpha_{2}\alpha_{2}} \equiv GT \\ \overline{\rho}_{\alpha_{1}\alpha_{2}} \overline{\rho}_{\alpha_{1}\alpha_{2}} \equiv H2' \\ \overline{\rho}_{\alpha_{1}\alpha_{1}\alpha_{2}\alpha_{2}} \equiv F \\ \overline{\rho}_{\alpha_{1}} \overline{\rho}_{\alpha_{2}} \overline{\rho}_{\alpha_{1}\alpha_{2}} \equiv SGH'$

SMEAM method

- ✓ Not all invariants are of equal importance
- ✓ We find promising results with $\chi \sim 0.33$ when the prefactor of the Gupta embedding function is replaced with a linear combination of invariants SG, H2' and SG³:

$$F_{SMEAM} = -A\sqrt{\overline{\rho}} \left(1 + c_{SG} \frac{\overline{\rho}_{\alpha}^{2}}{\overline{\rho}^{2}} + c_{H2'} \frac{\overline{\rho}_{\alpha\beta}^{2}}{\overline{\rho}^{2}} + c_{SG^{3}} \frac{\overline{\rho}_{\alpha}^{2}}{\overline{\rho}^{2}} \frac{\overline{\rho}_{\beta}^{2}}{\overline{\rho}^{2}} \frac{\overline{\rho}_{\gamma}^{2}}{\overline{\rho}^{2}} \right)$$

SMEAM nearest neighbor distances

SMEAM dissociation energies

Further results

Further results

Further results

	$C_{\rm 11}({\rm fcc})$	$C_{12}(\mathrm{fcc})$	$C_{44}({ m fcc})$	γ(111)	γ(100)	γ(110)	E_{v}
DFT	164	128	80	1.36	1.44	1.66	0.205
Gupta	164	115	81	1.45	1.64	1.53	0.215
SMEAM	160	122	67	1.45	1.62	1.74	0.184
	(100)	(aa)	(aa)	C (do)	C (do)	C (do)	
	$C_{\rm 11}({ m sc})$	$C_{\rm 12}({ m sc})$	$C_{44}(\mathrm{sc})$	$C_{\rm 11}({\rm dc})$	$C_{\rm 12}({\rm dc})$	$C_{\rm 44}({ m dc})$	
DFT	C ₁₁ (sc) 136	C ₁₂ (sc)	C ₄₄ (sc) -13	C ₁₁ (dc) 85	C ₁₂ (dc)	C ₄₄ (dc) 93	
DFT Gupta	C ₁₁ (sc) 136 275	C ₁₂ (sc) 80 2.7	C ₄₄ (sc) -13 -24	C ₁₁ (dc) 85 34	C ₁₂ (dc) 36 57	C ₄₄ (dc) 93 42	

• C_{ij} in units of GPa, surface energies in J/m^2 , vacancy energies in $10^{-18} J$.

Conclusions

- Most forms of EAM components can be fitted to yield a similar level of transferability between geometries with $1 \le Z \le 12$.
- Birch-Murnaghan EOS, Finnis-Sinclair and Gupta are slightly above average.
- Transferability can be improved with charge density gradient dependent terms.