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NEMO 

Nucleus for European Modelling of the Ocean 

5 major components 

Blue Ocean 

White Ocean 

Green Ocean 

Adaptive mesh refinement 

Assimilation 

What is it? 
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NEMO 

Available with a public license 

www.nemo-ocean.eu  

Used by “240 projects in 27 countries” 

170,000 lines of FORTRAN 90 

Mostly small stencil/single element calculations 

Vital Statistics 

http://www.nemo-ocean.eu/
http://www.nemo-ocean.eu/
http://www.nemo-ocean.eu/
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CODE PROFILE 

Very Flat 

GYRE25 

tra_ldf_iso

ldf_slp

tra_adv_tvd

dyn_spg_flt

nonosc

tke_tke

ORCA025 

lim_rhg

tra_ldf_iso

tra_adv_tvd

ldf_slp

nonosc

tke_tke
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OPENACC DIRECTIVES 

Program myscience 

   ... serial code ... 

!$acc kernels 

   do k = 1,n1 

      do i = 1,n2 

          ... parallel code ... 

      enddo 

    enddo 

!$acc end kernels  

  ... 

End Program myscience 

CPU Accelerator 
 

Familiar 

Insert compiler hints into Fortran & C code 

Preserves legacy code portability 

 

Powerful 

Compiler parallelizes code with less developer effort 

 

Open 

Supports accelerators from NVIDIA, AMD, Intel 

Open specification driven by HPC industry vendors 

OpenACC

Compiler 

Hints 
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OPENACC 

Directives are a good solution for flat profile 

 

No massive gains to be made in any single place 

 

More maintainable, quicker to implement 

Natural Solution 
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NEMO: ADDING OPENACC 

Almost entirely insertion of directives 

Small changes to MPI routines: 

Multiple sequential calls “batched” 

Also beneficial to CPU code 

Code runs on CPU if compiled without OpenACC 

As if no changes have been made 

Minimal Impact 
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NEMO: ADDING OPENACC 

Memory heterogeniaility  

Not a complete port 

Code can update a CPU version of the data without updating GPU version 

Hard to debug 

Solution? 

Rely on implicit copies and incrementally enable data regions (pcopy) 

Throw errors in known incomplete areas 

Challenges 
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TEST CASE 1 

Idealised Blue Ocean test case  

Used for simple benchmarks/validation 

Equivalent to global ½° horizontal resolution (752x502) 

31 vertical levels 

Approximately 7GB RAM required  

GYRE25 
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Node utilization: 
2 x IVB + 2 x K40 

Number of Compute Nodes 

Without using GPUs 

Use of GPUs 

GYRE25 TIMING 

3.3x 

2.9x 
2.4x 

1.8x 
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STRONG SCALING PROFILE 

8 Nodes 

CPU Strong Scaling 

dyn_spg_flt

tra_adv_tvd

tra_ldf_iso

nonosc

ldf_slp

tke_tke

GPU Strong Scaling 

dyn_spg_flt

tra_ldf_iso

nonosc

tra_adv_tvd

ldf_slp
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STRONG SCALING 

Linear solver: SOR method 

Lots of communication. Lots of very small kernels 

sol_sor iterates 200 times per time step 

1000 time steps => 200,000 calls. 

~6 kernels/call => 1,200,000 kernel launches 

~10µs latency => ~12 seconds + MPI latency 

What is the limiter? 



14  

STRONG SCALING 

 

Solver does not scale well on GPU 

 

Solution? 

More efficient MPI packing/unpacking 

Reduced solver communications 

Not implemented yet 

 

 

 

 

Solver performance 
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TEST CASE 2 

Builds on GYRE. Blue Ocean and White Ocean 

LIM2 Ice Model 

Regular horizontal grid 

Global ¼° horizontal resolution (1442x1021) 

Variable vertical grid 

75 vertical levels 

~90 GB RAM 

ORCA025 
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 Node utilization: 
2 x IVB + 2 x K40 

ORCA025 settings: 

2.3x 

Number of Compute Nodes 

2.1x 
1.8x 1.7x 

Output every 5 days 

Total run: 10 days 

Time steps: 600 

 

 

Without using GPUs 

Use of GPUs 

ORCA025 TIMING 
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NODE CONFIGURATIONS 

Configurations give similar performance 

4 Nodes: 8xK40, 8xIVB 

2 Nodes: 8xK40, 4xIVB 10 Nodes: 20xIVB 
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STRONG SCALING PROFILE 

8 Nodes 

CPU Strong Scaling 

lim_rhg

tra_adv_tvd

sol_pcg

nonosc

ldf_slp

tra_ldf_iso

GPU Strong Scaling 

lim_rhg

sol_pcg

tra_ldf_iso

ldf_slp

nonosc
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PERFORMANCE 

As with GYRE, strong scaling on the GPU needs to be improved 

Same problems as before: 

Too many communications 

Inefficient use of the GPU in these communications 

Strong Scaling 
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PERFORMANCE 

OpenACC not heavily tuned: 

No worker/vector/gang clauses 

No restructuring of the original source 

Compiler-side optimisations still possible 

Loop fusion (worth ~10%) 

Shared memory 

Codebase 
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NEXT STEPS 

Replaces LIM2 ice model with LIM3 ice model 

Better physics 

Fewer communications 

Streamlined MPI 

Several other fixes/improvements 

NEMO 3.6 
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NEXT STEPS 

Possible changes to structure to improve MPI comms 

Larger halo allowing for reduced comms 

Reordering of MPI routines to improving packing/unpacking performance 

In isolation: 15-20% application speedup on 8xK40 case 

Projected increase from 2.3x to 2.7x speedup vs 8xIVB 

Significantly better strong scaling performance  

Beyond NEMO 3.6 
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LONGER TERM 

Collaboration between STFC, NERC and University of Manchester 

Evaluating GungHo separation of concerns for NEMO 

Separate Kernel, Physics and Algorithm layer 

4-5 years from now NEMO may look quite different 

Directives probably still the solution 

 

GOcean 



25  

THANK YOU 

 

Jeremy Appleyard, NVIDIA - jappleyard@nvidia.com 

 

 

With thanks to: 

     Mike Ashworth (STFC, UK) 

     Andrew Coward (NOC, UK) 

 

Questions? 

mailto:jappleyard@nvidia.com

