

ACCELERATING NEMO USING OPENACC

Jeremy Appleyard, NVIDIA

What is it?

Nucleus for European Modelling of the Ocean

- 5 major components
 - Blue Ocean
 - White Ocean
 - Green Ocean
 - Adaptive mesh refinement
 - Assimilation

What is it?

Nucleus for European Modelling of the Ocean

- 5 major components
 - Blue Ocean
 - White Ocean
 - Green Ocean
 - Adaptive mesh refinement
 - Assimilation

Vital Statistics

Available with a public license

- www.nemo-ocean.eu
- Used by "240 projects in 27 countries"
- 170,000 lines of FORTRAN 90

Mostly small stencil/single element calculations

CODE PROFILE

Very Flat

GYRE25

tra_ldf_iso
ldf_slp
tra_adv_tvd
dyn_spg_flt
nonosc
tke_tke

lim_rhg
tra_ldf_iso
tra_adv_tvd
ldf_slp
nonosc
tke_tke

OPENACC DIRECTIVES

Familiar

Insert compiler hints into Fortran & C code Preserves legacy code portability

Powerful

Compiler parallelizes code with less developer effort

Open

Supports accelerators from NVIDIA, AMD, Intel Open specification driven by HPC industry vendors

OPENACC

Natural Solution

Directives are a good solution for flat profile

No massive gains to be made in any single place

More maintainable, quicker to implement

NEMO: ADDING OPENACC

Minimal Impact

Almost entirely insertion of directives

Small changes to MPI routines:

Multiple sequential calls "batched"

Also beneficial to CPU code

Code runs on CPU if compiled without OpenACC

As if no changes have been made

NEMO: ADDING OPENACC

Challenges

Memory heterogeniaility

- Not a complete port
- Code can update a CPU version of the data without updating GPU version
- Hard to debug
- Solution?
 - Rely on implicit copies and incrementally enable data regions (pcopy)
 - Throw errors in known incomplete areas

TEST CASE 1

GYRE25

- Idealised <u>Blue Ocean</u> test case
- > Used for simple benchmarks/validation
- Equivalent to global ½° horizontal resolution (752x502)
- 31 vertical levels
- Approximately 7GB RAM required

GYRE25 TIMING

Number of Compute Nodes

STRONG SCALING PROFILE

8 Nodes

dyn_spg_flt
tra_adv_tvd
tra_ldf_iso
nonosc
ldf_slp
tke_tke

GPU Strong Scaling

12 📀 NVIDIA,

STRONG SCALING

What is the limiter?

Linear solver: SOR method

Lots of communication. Lots of very small kernels

sol_sor iterates 200 times per time step

1000 time steps => 200,000 calls.

~6 kernels/call => 1,200,000 kernel launches

~10µs latency => ~12 seconds + MPI latency

STRONG SCALING

Solver performance

Solver does not scale well on GPU

Solution?

- More efficient MPI packing/unpacking
- Reduced solver communications
- Not implemented yet

TEST CASE 2

ORCA025

- Builds on GYRE. <u>Blue Ocean</u> and <u>White Ocean</u>
- LIM2 Ice Model
- Regular horizontal grid
 - Global ¼° horizontal resolution (1442x1021)
- Variable vertical grid
 - 75 vertical levels
- ~90 GB RAM

ORCA025 TIMING

16 NVIDIA.

NODE CONFIGURATIONS

Configurations give similar performance

STRONG SCALING PROFILE

8 Nodes

CPU Strong Scaling

∎lim_rhg

tra_adv_tvd

sol_pcg

nonosc 🛛

∎ldf_slp

ĭtra_ldf_iso

GPU Strong Scaling

PERFORMANCE

Strong Scaling

- > As with GYRE, strong scaling on the GPU needs to be improved
- Same problems as before:
 - Too many communications
 - Inefficient use of the GPU in these communications

PERFORMANCE

Codebase

OpenACC not heavily tuned:

- No worker/vector/gang clauses
- No restructuring of the original source

Compiler-side optimisations still possible

- Loop fusion (worth ~10%)
- Shared memory

NEXT STEPS

NEMO 3.6

Replaces LIM2 ice model with LIM3 ice model

Better physics

- Fewer communications
- Streamlined MPI

Several other fixes/improvements

NEXT STEPS

NEMO 3.6

Replaces LIM2 ice model with LIM3 ice model

Better physics

- Fewer communications
- Streamlined MPI

Several other fixes/improvements

NEXT STEPS

Beyond NEMO 3.6

Possible changes to structure to improve MPI comms

- Larger halo allowing for reduced comms
- Reordering of MPI routines to improving packing/unpacking performance

In isolation: 15-20% application speedup on 8xK40 case

- Projected increase from 2.3x to 2.7x speedup vs 8xIVB
- Significantly better strong scaling performance

LONGER TERM

GOcean

- Collaboration between STFC, NERC and University of Manchester
- Evaluating GungHo separation of concerns for NEMO
 - Separate Kernel, Physics and Algorithm layer
- 4-5 years from now NEMO may look quite different
 - Directives probably still the solution

THANK YOU

Questions?

Jeremy Appleyard, NVIDIA - jappleyard@nvidia.com

With thanks to:

Mike Ashworth (STFC, UK)

Andrew Coward (NOC, UK)