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We addressed the issue of portability of code across several computing
architectures preserving performances.
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The D2Q37 Lattice Boltzmann Model

Lattice Boltzmann method (LBM) is a class of computational fluid dynamics
(CFD) methods

simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations

a set of virtual particles called populations arranged at edges of a
discrete and regular grid

interacting by propagation and collision reproduce – after appropriate
averaging – the dynamics of fluids

D2Q37 is a D2 model with 37 components of velocity (populations)

suitable to study behaviour of compressible gas and fluids optionally in
presence of combustion 1 effects

correct treatment of Navier-Stokes, heat transport and perfect-gas
(P = ρT ) equations

1
chemical reactions turning cold-mixture of reactants into hot-mixture of burnt product.
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Computational Scheme of LBM
foreach time−step

foreach lattice−point
propagate ( ) ;

endfor

foreach lattice−point
collide ( ) ;

endfor

endfor

Embarassing parallelism
All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge
Design an efficient implementation able exploit a large fraction of available
peak performance.
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D2Q37: propagation scheme

perform accesses to neighbour-cells at distance 1,2, and 3

generate memory-accesses with sparse addressing patterns
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D2Q37: boundary-conditions

After propagation, boundary conditions are enforced at top and bottom edges
of the lattice.

2D-lattice with period-boundaries along
X -direction

top and bottom boundary conditions are
enforced:

I to adjust some values at sites y = 0 . . . 2
and y = Ny − 3 . . .Ny − 1

I e.g. set vertical velocity to zero

At left and and right edges we apply periodic boundary conditions.
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D2Q37 collision

collision is computed at each lattice-cell after computation of boundary
conditions

computational intensive: for the D2Q37 model requires ≈ 7500 DP
floating-point operations

completely local: arithmetic operations require only the populations
associate to the site

computation of propagate and collide kernels are kept separate

after propagate but before collide we may need to perform collective
operations (e.g. divergence of of the velocity field) if we include
computations conbustion effects.
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Implementation: Exploit Parallelism

process all sites in parallel

keep two copies in memory

vectorization

core parallelism

node parallelism
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Implementation: Memory layout for LB, AoS vs SoA
/ / l a t t i c e s tored as AoS :
typedef struct {

double p1 ; / / popu la t ion 1
double p2 ; / / popu la t ion 2
. . .
double p37 ; / / popu la t ion 37

} pop_t ;

pop_t lattice2D [SIZEX∗SIZEY ] ;

AoS: corresponding populations of different sites are interleaved, causing
strided memory-access and leading to coalescing issues.

/ / l a t t i c e s tored as SoA :
typedef struct {

double p1 [SIZEX∗SIZEY ] ; / / popu la t ion 1 ar ray
double p2 [SIZEX∗SIZEY ] ; / / popu la t ion 2 ar ray
. . .
double p37 [SIZEX∗SIZEY ] ; / / popu la t ion 37 ar ray

} pop_t ;

pop_t lattice2D ;

SoA: corresponding populations of different sites are allocated at contiguous
memory addresses, enabling coalescing of accesses, and making use of full
memory bandwidth.
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AoS vs SoA in a 3D Lattice Boltzmann Application
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Lattice memory allocation

lattice allocated in column-major order

we use two copies of the lattice:
each step reads from prv and write onto
nxt

a lattice of size Lx × Ly is stored as a grid of
(Hx + Lx + Hx)× (Hy + Ly + Hy ) sites:

I make uniform computation of propagate
also for sites close to borders

I start address of lattice can be properly
aligned to work-group size and
cache-line.
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Multi-device implementation

Lattice partitioning:

GPUs virtually arranged in a ring

require an additional step PBC to
update halo-columns at each step

PBC is a GPU-to-GPU bi-directional
(remote-)memory copy

S. F. Schifano (Univ. and INFN of Ferrara) Portability, Performance, Scalability Jülich, June 10-12, 2014 12 / 35



Code Scheme

for ( step = 0; step < MAXSTEP ; step++ ) {
pbc ( . . . ) ; / / p e r i o d i c boundary cond i t i ons

propagate ( . . . ) ; / / propagate ( )

bc ( . . . ) ; / / bc ( )

collide ( . . . ) ; / / c o l l i d e ( )
}
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We have considered several hardware systems
i7-4930K Tesla K20X Xeon-Phi 7120P

#physical cores 6 14 61
#logical cores 12 2688 244
Frequency (GHz) 3.4 0.735 1.238
GFLOPS (DP) 163.2 1317 1208
SIMD AVX 64-bit N/A AVX2 512-bit
cache (MB) 12 1.5 30.5
Mem BW (GB/s) 59.7 250 352
Power (W) 130 235 300

i7-4930K: CPU based on the Intel Ivy Bridge micro-architecture

Tesla K20X: processor of the NVIDIA Kepler family

Xeon-Phi: Intel MIC architecture

Can we run on all of them using only one code ? If YES at which price ?
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We have considered several programming frameworks

C

I CPUs
I Xeon-Phi

CUDA

I GPUs

OpenCL

I GPUs
I CPUs
I Xeon-Phi

OpenACC

I GPUs
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C (our first) Implementation

core parallelism:

I lattice split over the cores
I e.g. along X direction
I borders replicated on each

socket
(make computation uniform)

I pthreads/openMP library to
manage parallelism

I NUMA library to control
allocations of data and threads

instruction parallelism:

I exploiting AVX vector instr.
I processing 4 lattice-sites in

parallel
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C results

On a dual-Sandybridge machine running at 3.1 GHz (396.8 DP GFlops peak)

Lattice: [1920x2048] 2.85 GB, NITER: 100
COLLIDE: 120740 us, p: 252.58 GFlops, MLUP/s: 32.95 (FLOP/site: 7666)
PROPAGATE: 52800 us, bw: 44.60 GB/s, MLUP/s: 75.34

On a dual-Haswell-v3 machine running at 2.3 GHz (588.8 DP GFlops peak,
preliminary)

Lattice: [1944x2048] 2.88 GB, NITER: 100
COLLIDE: 84320 us, p: 366.21 GFlops, MLUP/s: 47.77 (FLOP/site: 7666)
PROPAGATE: 72480 us, bw: 32.90 GB/s, MLUP/s: 55.57
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Cuda Implementation

keep lattice data on GPU memory

offload computation of propagate and collide kernels

computation of pbc involves GPU and CPU

one thread process one site
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Grids Layout
Uni-dimensional array of NTHREADS, each thread processing one lattice site.

Example: physical lattice of 11 × 16 cells; the size of work-groups is 1 × 4.

Ly = α× Nwi , α ∈ N; (Ly × Lx)/Nwi = Nwg
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Cuda Results

On K20Xm board (1.31 TFlops DP peak), 256 threads/block, cuda 6.5:

Lattice: [1024x2048] 0.578125 GB, NITER: 1000
COLLIDE: 23656.14 us, p: 573.75 GF/s, MLUPs: 88.65 (FLOP/site: 6472)
PROPAGATE: 7945.81 us, bw: 156.25 GB/s, MLUPs: 263.93

On a K40 board (1.43 TFlops DP peak), 256 threads/block, cuda 6.5:

Lattice: [1024x2048] 0.578125 GB, NITER: 1000
COLLIDE: 21584.96 us, p: 628.81 GF/s, MLUPs: 97.16 (FLOP/site: 6472)
PROPAGATE: 7384.59 us, bw: 168.12 GB/s, MLUPs: 283.99

S. F. Schifano (Univ. and INFN of Ferrara) Portability, Performance, Scalability Jülich, June 10-12, 2014 20 / 35



Open Computing Language (OpenCL)
programming framework for heterogenous architectures:
CPU+accelerators

computing model:

I host-code plus one or more kernels running on accelerators
I kernels are executed by a set of work-items each processing an item

of the data-set (data-parallelism)
I work-items are grouped into work-groups, each executed by a

compute-unit and processing K work-items in parallel using vector
instructions

I e.g.: on Xeon-Phi work-groups are mapped on (virtual-)cores
processing each up to 8 double-precisions floting-point data

memory model identifies a hierarchy of four spaces which differ for size
and access-time : private, local, global and constant memory

OCL aims to guarantee portability of both code and performances across
several architectures
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OCL Saxpy kernel

C = s · A× B, s ∈ R, A,B,C ∈ Rn

__kernel void saxpy ( __global double ∗A , __global double ∗B ,
__global double ∗C , const double s ) {

/ / get g loba l thread ID
int id = get_global_id ( 0 ) ;

C [id ] = s ∗ A [id ] + B [id ] ;
}

each work-item executes the saxpy kernel computing just one data-item of
the output array

first it computes its unique global identifier id

and then uses it to address the idth data-item of arrays A, B and C.
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OCL Result Issues on GPUs

As Winter 2013: CUDA-5.5, driver-319.82

Pbc time/iter: 0.06 msec
Propagate time/iter: 17.54 msec MLUPS: 224.167811
Bc time/iter: 8.00 msec
Collide time/iter: 104.78 msec MLUPS: 37.527603

As Summer 2014: CUDA-5.5, driver-331.89

Pbc time/iter: 0.06 msec
Propagate time/iter: 17.79 msec MLUPS: 220.973559
Bc time/iter: 8.70 msec
Collide time/iter: 199.13 msec MLUPS: 19.746729

Results does not improve using CUDA-6.0 and CUDA-6.5.
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OCL Benchmark of Propagate on Xeon-Phi

Performance of propagate as function of the number of work-items Nwi per
work-group, and the number of work-groups Nwg .
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OCL Benchmark of Collide on Xeon-Phi

Performance of collide as function of the number of work-items Nwi per
work-group, and the number of work-groups Nwg .
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OpenACC example: the Saxpy function

#pragma acc copyin (x ) , copy (y )
{

my_saxpy (x , y ) ;

acc_async_wait ( 1 ) ;
}

void my_saxpy (float ∗ x , float ∗ y ) {

#pragma acc kernels present (x ) present (y ) async ( 1 )
#pragma acc loop gang vector (256)
for (int i = 0; i < N ; ++i )
y [i ] = a∗x [i ] + y [i ] ;

}

#pragma clauses identifies regions to run on the accelerator, how to organize
computation, and how to manage data transfers.
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OpenACC: Propagate

inline void propagate (
const data_t∗ restrict prv , data_t∗ restrict nxt )

{
int ix , iy , site_i ;

#pragma acc kernels present (prv ) present (nxt )
#pragma acc loop gang independent
for ( ix=HX ; ix < (HX+SIZEX ) ; ix++) {

#pragma acc loop vector independent
for ( iy=HY ; iy<(HY+SIZEY ) ; iy++) {
site_i = (ix∗NY ) + iy ;
nxt [ site_i ] = prv [ site_i−3∗NY+ 1 ] ;
nxt [NX∗NY+site_i ] = prv [NX∗NY+site_i−3∗NY ] ;
. . . .

}
}

}
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OpenACC: Results
On K20Xm, 256 threads/block, cuda 5.5, PGI 14.1:
Lattice: [1920x2048] 1.083984 GB, NITER: 1000
PBC+PROP: 18.83 ms, bw: 123.64 GB/s, MLUP/s: 208.82
BC: 2.07 ms
COLLIDE: 112.66 ms, p: 227.00 GFlops, MLUP/s: 35 (FLOPs/site: 6504)

On K20Xm, 256 threads/block, cuda 6.0, PGI 14.7:
Lattice: [1920x2048] 1.083984 GB, NITER: 1000
PBC+PROP: 14.89 ms, bw: 156.29 GB/s, MLUP/s: 264.01
BC: 2.37 ms
COLLIDE: 144.81 ms, p: 176.61 GFlops, MLUP/s: 27.15 (FLOPs/site: 6504)

On K40, 256 threads/block, cuda 6.0, PGI 14.7:
Lattice: [1920x2048] 1.083984 GB, NITER: 1000
PBC+PROP: 13.90 ms, bw: 167.44 GB/s, MLUP/s: 282.84
BC: 2.76 ms
COLLIDE: 79.66 ms, p: 321.07 GFlops, MLUP/s: 49.36 (FLOP/site: 6504)

On K40 performance improves with compiler 14.7 and some suggestions from PGI (compilation
settings loadcache:L1,maxregcount:120).

Performance of collide are signficantly slower than CUDA. We believe this could be due to the
lack of proper unroll of the code.
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OpenACC: Overlapping Pbc and Propagate

gatherL ( f2 , sndbufL ) ; / / async on queue ( 1 )
gatherR ( f2 , sndbufR ) ; / / async on queue ( 2 )

propagateBulk ( f2 , f1 ) ; / / async on queue ( 3 )

acc_async_wait ( 1 ) ;

MPI_Sendrecv (
sndbufL , L , MPI_DOUBLE , mpi_rankL , tag2 ,
rcvbufR , L , MPI_DOUBLE , mpi_rankR , tag2 ,
MPI_COMM_WORLD , &status ) ;

acc_async_wait ( 2 ) ;

MPI_Sendrecv (
sndbufR , L , MPI_DOUBLE , mpi_rankR , tag1 ,
rcvbufL , L , MPI_DOUBLE , mpi_rankL , tag1 ,
MPI_COMM_WORLD , &status ) ;

scatterL ( f2 , rcvbufL ) ; / / async on queue ( 1 )
propagateL ( f2 , f1 ) ; / / async on queue ( 1 )

scatterR ( f2 , rcvbufR ) ; / / async on queue ( 2 )
propagateR ( f2 , f1 ) ; / / async on queue ( 2 )

acc_async_wait_all ( ) ;

Critical optimization for scalability
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OpenACC: Overlapping Pbc and Propagate
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OpenACC: Overlapping Pbc and Propagate

TPBC = max
{

Ta = TG + TP + TS + TP′

Tb = TG + TMPI(L) + TMPI(R) + TS + TP′
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Comparison Results

i7-4930K Tesla K20Xm Xeon-Phi 7120

Code Version C CUDA OCL OACC OCL

TPbc+Prop [msec] 162.00 15.38 14.89 18.83 30.46
GB/s 14.54 151.36 156.33 123.64 76.42
Ep 24% 60% 62% 49% 22%

TBc [msec] 4.87 5.70 7.08 2.07 3.20

TCollide [msec] 307.42 43.96 93.27 112.66 72.79
MLUPS 13 89 42 35 54
Ec 59% 52% 24% 20% 34%
µJ / site 10.04 2.63 5.57 6.73 5.55

TWC/iter [msec] 489.98 65.03 115.24 135.37 106.45
MLUPS 8 60 34 29 37

Lattice size: 1920× 2048
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OACC Scalability

strong regime lattice size: 1024× 8192

weak regime lattice size 256× 8192 / GPU
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Conclusions
Today scenario faced by programmers:

CUDA gives the best performance but

I rewriting of the code is necessary
I lack of portability

OpenCL is portable with good performance

I implementation for GPUs seems not supported
I coding is lengthy and low-level

OpenACC is promising

I today performance are lower if compared with CUDA
I not supported by all accelerator

Take-away conclusions:

several programming frameworks are available

solutions for portability of code and performance still away
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