Processing Big (Radio Astronomy) Data with GPUs

Laura Spitler & Marina Berezina Max-Planck-Institut für Radioastronomie, Bonn 8 October 2014

Using **radio pulsars** to study fundamental physics...

...and using **fast radio bursts** to study astrophysics.

Pulsar

"pulsating radio source"

Spinning neutron star with a very strong magnetic field

neutron star

Neutron Stars

The same mass as the sun but with the diameter of 20 km

GoogleMaps

The density of an atomic nucleus

The escape velocity from the surface is 70% the speed of light Magnetic fields 10¹⁰ and 10¹⁵ times as strong as the Earth's

Fastest spinning pulsar rotates 700 times a second

"Lighthouse" Model

Michael Kramer (MPIfR/JBCA)

"Lighthouse" Model

Michael Kramer (MPIfR/JBCA)

Precise Astronomical Clocks

The spin frequency of J0348+0432 on I4 Mar 2012:

25.5606361937675(4) Hz

The spin frequency of J0348+0432 on 08 Oct 2014:

25.56063618102021 Hz

Pulsars are tools to test our understanding of gravity

Science / J. Antoniadis (MPIfR)

Gravitational Tests with Pulsars

- First indirect evidence of the existence of gravitational waves
- Networks of pulsars can detect the low frequency gravitational wave background
- Pulsars in binary systems provide best tests of alternative theories of gravity

Gravitational Radiation

Binary pulsar B1913+16 provided first indirect evidence for gravitational waves.

Search for even more suitable pulsars

(holy grail: pulsar orbiting a black hole)

Effelsberg 100m

Radio Telescopes

LOFAR

Hans Hordijk

Jansky Very Large Array

MPIfR

NRAO/AUI/NSF

Green Bank Telescope, USA NRAO/AUI/NSF

Spectrometer (FFT)

UC Berkeley, CASPER group, H. Chen

Pulsar survey data: 2D array of time, frequency, and intensity

Green Bank Telescope, USA NRAO/AUI/NSF

Spectrometer (FFT)

UC Berkeley, CASPER group, H. Chen

Pulsar survey data: 2D array of time, frequency, and intensity

peasoup

- Full GPU-based pulsar search pipeline
- Written by Ewan Barr (U of Swinburne)
- Uses dedisp dedispersion library (Ben Barsdell)
- Multi-GPU capability

Algorithms search over three parameters:

Michael Kramer (MPIfR/JBCA)

Further unknown: position on the sky

Dispersion

The delay is proportional to the number of electrons along the line-of-sight. The magnitude of the delay is quantified by the **dispersion measure** (DM).

Dedispersion

Must try a large (~1000) number of trial DMs to find the correct value for the pulsar.

Pulsar survey data $A_{\nu,t}$ with N_t time samples and N_{ν} frequency channels

Mathematically:
$$D_{DM,t} = \sum_{\nu}^{N_{\nu}} A_{\nu,t+\Delta t(DM,\nu)}$$

(for a given trial DM)

Operational Complexity: $O(N_t N_{\nu} N_{\rm DM})$

dedisp library: Parallelized over dimensions N_t and $N_{\rm DM}$ Barsdell et al, MNRAS, 443, 2012 <u>http://dedisp.googlecode.com</u>/ (or sourceforge)

Algorithms search over three parameters:

Further unknown: position on the sky

Searching for periodic signals

Pow

Use Fourier a transform to efficiently calculate many trial rotation periods

Pulsar signal spread across many harmonics of the pulsar spin frequency

Peak finding algorithm identifies statistically significant bins

Harmonic summatior

Algorithms search over three parameters:

Further unknown: position on the sky

Searching for Accelerated Signals

M. Kramer (MPIfR)

Observed spin pulsar spin period changes over the coarse of its orbit due to the Doppler effect The S/N of peak is reduced in the FFT of the time series

Correct with "time domain resampling"

http://www.jb.man.ac.uk/distance/frontiers/pulsars/section6.html

Correcting for Acceleration

Stretch and squeeze time series for a given Doppler acceleration

Must try a range of trial acceleration values (10s -100s) and is calculated for each trial DM

 A_n and B_n are original and resampled time series t_n are threads

FFT + HS + Peak finding

THE HIGH TIME RESOLUTION UNIVERSE SURVEY (HTRU)

All-sky hunt for pulsars with the Effelsberg and Parkes radio telescopes

HTRU-North: Setups

- The first all-northern-sky survey in more than 20 years!
- Has much higher time and frequency resolution than previous surveys
- Will probe deep into the Galactic plane in the hunt for exotic pulsars

Center frequency: 1.36 GHz Bandwidth: 300 MHz Sampling time: 54 µs 7-beam receiver

~ 180,000 sky pointings 1.5 million beams 76 million candidates 2.5 Petabytes of data

HTRU-North: Strategy

Data processing in the early days

Fast pipeline	Full pipeline	
Computers at Effelsberg	VLBI cluster at MPIFR (10 computing nodes)	
Low-resolution version of the data	Full-resolution data	
Almost in real time	Takes a long time	
Sensitive to 90% of normal pulsars from the data and transients	Sensitive to pulsars in binary systems	
Periodicity search and single-pulse search	Periodicity search with acceleration search	

HTRU-North: First discoveries

PSR J1946+3417: The most massive pulsar ever?

M_{p} =1.93 ± 0.07 M_{Sun}

Spin period: **3.17 ms** Orbital period: **27.02 days** Orbital eccentricity: **0.134** (highly eccentric orbit!) Companion mass: **0.27 M**_{sun} Nature of companion: white dwarf Total mass of the system: **2.2 M**_{sun}

GPU pipeline: a new word in pulsar data processing

A new pulsar processing pipeline that runs on GPUs. Large speed-ups in processing over traditional CPUs

Juropa3 Experimental Cluster

Four GPU nodes

Two Kepler GPU cards each

PEASOUP

GPU processing: optimistic (future) numbers

- 900 GPU-hours per week (night time, weekends)
- ~4.5 minutes for processing one beam on a single GPU
- 12000 beams per week using two GPUs on every node
 (8 GPUs)!!!
- **CPU PIPELINE: 12000** mid-lat beams in > **one year**

GPU PIPELINE: 100000 mid-lat beams can be processed in 9 GPU-weeks!!!

Number of mid-lat beams processed with GPU: **13500** (~8% of the mid-lat beams observed by now \approx 3% of the mid-lat beams planned to be observed in the survey)

What has been found: Two new bright MSPs

(and tens of known pulsars :)

PSR J2045+3633

wind winder with

Spin period: 31.68 ms Orbital period: 32.3 days Orbital eccentricity: 0.017 (unusually eccentric orbit!) Minimum companion mass: 0.8 M_{Sun} Nature of companion: massive white dwarf or neutron star (?!)

Spin period: 12.58 ms Orbital period: 2.45 days Orbital eccentricity: 0.000008 (circular orbit!) Minimum companion mass: 0.8 M_{Sun} Nature of companion: massive white dwarf

Fast Radio Bursts

- Short-duration radio bursts
- Discovered in archival pulsar data
- Implied distances place the sources in other galaxies
- Apparently nonrepeating

Extragalactic?

Fast radio bursts

Observed dispersion measure is too large for a source in our Galaxy

J.Carpenter, T.H. Jarrett/2MASS, R. Hurt, C.

From observations of pulsars, we can model the distribution of electrons in our Galaxy

Evaporating Black Holes (Rees, 1977)

Merging Neutron Stars (Hansen & Lyutikov, 2001)

Collapsing supramassive neutron stars (Falcke & Rezzolla, 2013)

Stellar flares (Loeb et al., 2013)

Pulsar giant pulses or magnetar flares

Colliding Cosmic Strings (Cai et al., 2012)

Goal: Discover FRBs in realtime in order to trigger follow-up

LOFAR

Hans Hordijk

Non-radio follow-up

SDSS Team, Fermilab Visual Media Services

"heimdall" transient detection code

- Written by Ben Barsdell
- All processing done in GPU
- Uses the dedisp library

Dedispersion (loop over trials)

Matched filtering (loop over boxcar filter widths)

Peak detection and clustering

Processing archival HTRU-N data on JUROPA3

Real-time system running in parallel to HTRU-N observations at Effelsberg

Processing archival HTRU-N data on JUROPA3

Processed ~8% of data Working on visualizing and digesting results Expecting 2-3 fast radio bursts

Real-time system running in parallel to HTRU-N observations at Effelsberg Currently working on interfacing spectrometer with GPUs

Square Kilometer Array

To be built in South Africa and Australia

Three configurations with different technologies

Computational challenge

Exaopt-scale realtime processing

GPUs will likely be play a role in the processor

	Present	SKA
Nbeams	7 to 13	2000
Ndm	~1000	~6000
Nacc	~70	~700

... plus sifting, candidate identification, folding

Questions? Fragen?