

Extreme-scaling applications 24/7 on JUQUEEN Blue Gene/Q

Experience from our latest scaling workshop

Computer systems at JSC

IBM Power 4+ JUMP, 9 TFlop/s IBM Power 6 IBM Blue Gene/L JUMP, 9 TFlop/s JUBL, 45 TFlop/s JUROPA IBM Blue Gene/P 200 TFlop/s JUGENE, 1 PFlop/s HPC-FF 100 TFlop/s IBM Blue Gene/Q Lustre GPFS JUQUEEN 5.9 PFlop/s JURECA 2014 \sim 2 PFlop/s + Booster JUQUEEN successor \sim 10 PFlop/s \sim 50 PFlop/s 2019 **General-Purpose Clusters Highly-Scalable Systems**

JUDGE 239 TFlop/s

DEEP ~ 430 TFlop/s

Experimental Systems

User support and scaling activities

A continuous 24/7 effort

Established support levels at JSC provide help scaling application codes.

This includes:

- Application support (initial contact point)
- Cross-sectional teams (Performance Analysis and Mathematical Modelling)
- Simulation Laboratories (part of Computational Science Division at JSC)

User support and scaling activities

A continuous 24/7 effort

Established support levels at JSC provide help scaling application codes.

This includes:

- Application support (initial contact point)
- Cross-sectional teams (Performance Analysis and Mathematical Modelling)
- Simulation Laboratories (part of Computational Science Division at JSC)

In addition:

Workshops on Porting and Tuning on JUQUEEN and Extreme Scaling on JUQUEEN with dedicated or even exclusive access to the system and direct support during hands-on sessions

Extreme Scaling 24/7

- This latest edition of Extreme Scaling Workshops invited 7 applications teams and was extremely successful: all teams had their codes running on the full system within 24 hours.
- The workshop provided exclusive access to JUQUEEN with close support by JSC Simulation Laboratories for Climate Science, Fluids & Solids Engineering and Neuroscience assisted the code-teams, along with JSC Cross-sectional Teams, JUQUEEN and IBM technical support.
- 5 new codes entered the High-Q Club as a result.
- A detailed report with user contributions is available as technical report FZJ-JSC-IB-2015-01 http://juser.fz-juelich.de/record/188191

The High-Q Club idea

Start a collection of codes to showcase running on all 28 racks of Blue Gene/Q at JSC, effectively using all 458 752 cores with up to 1.8M hardware threads

- --> Promote the idea of exascale capability computing
- Spark interest in tuning and scaling codes

Goal

- Encourage our users to try and reach exascale readiness
- Establish milestones in application development towards future systems
- Identify and understand bottlenecks in trying to reach millions of threads/processes and learn how to transition to exascale systems

Current status of the High-Q Club

25

Diverse membership of 24 codes from fundamental physics, neuroscience, plasma physics, molecular dynamics, engineering and climate and earth science.

7 codes

7 codes

03 09 2015

Current status of the High-Q Club

CIAO, CoreNeuron, dynQCD, FE2TI, FEMPAR, Gysela, ICON, IMD, JURASSIC, JuSPIC, KKRnano, LAMMPS(DCM), MP2C, $\mu\varphi$ (muPhi), Musubi, NEST, OpenTBL, PEPC, PMG+PFASST, PP-Code, psOpen, SHOCK, Terra-Neo, waLBerla, ZFS

Becoming a member

Or: how to compare and judge applications

- Wide range of applications → no common set of criteria
- Selection criteria are flexible (open for discussion!)
 - We try to collect as much information as possible (not all is made public)
 - Discussions with developers and within JSC
- Run a non-trivial example, ideally very close to production runs
- Submit evidence of strong and/or weak scalability to all available cores
- Preference on multi-threading (at least use HWTs)
- Include I/O if possible
- Possibly provide peak performance numbers

Code characteristics

	Programming			Parallelisation			
Code	Languages			MPI	OMP	Concurrency	File I/O
CoreNeuron	С	C++		1	64	64:1835008	MPI-IO
FE ² TI	С	C++		16	4	64: 1 835 008	
FEMPAR			F08	64		64:1756001	
ICON	С		Ftn	1	64	64:1835008	(netCDF)
MPAS-A	С		Ftn	16		16: 458 752	PIO,pNetCDF
psOpen			F90	32	2	64:1835008	pHDF5
SHOCK	С			64		64:1835008	(cgns/HDF5)

Code characteristics

Code

CoreNeuron FE²TI FEMPAR

ICON

MPAS-A

psOpen

SHOCK

EPFL Blue Brain Project

simulation of electrical activity of neuronal networks including morphologically detailed neurons

Code characteristics

Code

FE²TI FEMPAR ICON MPAS-A psOpen

SHOCK

CoreNeuron

Universität Köln & TUB Freiberg

scale-bridging incorporating micro-mechanics in macroscopic simulations of multi-phase steels

UPC-CIMNE

massively-parallel finite-element simulation of multiphysics problems governed by PDEs

Code characteristics

Code

CoreNeuron FE²TI FEMPAR ICON

psOpen SHOCK

MPAS-A

DKRZ & JSC SimLab Climate Science

icosahedral non-hydrostatic atmospheric model

KIT & NCAR

multi-scale non-hydrostatic atmospheric model for global, convection-resolving climate simulations

Code characteristics

Code

CoreNeuron FE²TI FEMPAR ICON MPAS-A psOpen

SHOCK

RWTH-ITV Inst. for Combustion Technology & JARA

direct numerical simulation of fine-scale turbulence

RWTH Shock Wave Laboratory

structured high-order finite-difference kernel for compressible flows

Code characteristics

	Programming			Parallelisation			
Code	Languages			MPI	OMP	Concurrency	File I/O
CoreNeuron	С	C++		1	64	64:1835008	MPI-IO
FE ² TI	С	C++		16	4	64: 1 835 008	
FEMPAR			F08	64		64:1756001	
ICON	С		Ftn	1	64	64:1835008	(netCDF)
MPAS-A	С		Ftn	16		16: 458752	PIO,pNetCDF
psOpen			F90	32	2	64:1835008	pHDF5
SHOCK	С			64		64:1835008	(cgns/HDF5)

Code characteristics

	Programming			Parallelisation			
Code	Languages			MPI	OMP	Concurrency	File I/O
CoreNeuron	С	C++		1	64	64:1835008	MPI-IO
FE ² TI	С	C++		16	4	64:1835008	
FEMPAR			F08	64		64: 1 756 001	
ICON	С		Ftn	1	64	64:1835008	(netCDF)
MPAS-A	С		Ftn	16		16: 458 752	PIO,pNetCDF
psOpen			F90	32	2	64:1835008	pHDF5
SHOCK	С			64		64:1835008	(cgns/HDF5)

Extended statistics

Programming models

Programming languages

Venn diagrams with areas proportional to absolute numbers.

MPI to the extreme

- MPI-only possible but only 256 MB available per rank sometimes memory is an issue either way
- MPAS-A: model initialisation took 30 mins (grid and neighbourhood set-up)
- ICON: MPI_THREAD_MULTIPLE w/ user-defined MPI_Allreduce & MPI_IN_PLACE prohibitive
- FEMPAR: MPI communicator management gets increasingly costly, trade speed for even more memory w/ MPI_Comm_Split

File I/O – too slow, too big, too complicated?

File I/O remains the most common impediment to scalability

- Times for I/O prevent scaling, on-the-fly analysis necessary
- MPAS-A: 1.2 TB of data not enough to scale, difficult to transfer and read in
- SHOCK: CFD specific library on top of HDF5 lead to non-fixable errors, synthetic data used
- Tools like Darshan or Score-P used at scale to identify problems

File I/O – too slow, too big, too complicated?

- Effective solutions need to be employed, such as SIONlib
- 11 (25) codes use parallel I/O, 5 (25) use SIONlib

MP2C on one mid-plane

MP2C on 28 racks

Extreme Scaling Workshop on JUQUEEN Scaling results

Remaining High-Q codes Scaling results

Workshop and High-Q Club – also for other systems?

Wide range of HPC applications have demonstrated excellent scalability, generally with only modest tuning effort

- Standard languages and MPI+multi-threading are sufficient
- Over-subscription of cores delivers important efficiency benefits
- Use vectorisation/SIMDization & libraries for node performance
- Did not see (m)any disruptive changes

Scaling on BG/Q also delivers benefits for other HPC computer systems

Summary

- Our activities attract a lot of interest: users ask for scaling workshops and strive to join the High-Q Club → currently 25 codes listed
- Hopefully enable our users to transition from peta to exascale
- Identified bottlenecks, solutions to common issues at hand not unique
- So far no disruptive changes necessary or chosen
- - Browse the High-Q Club webpages: http://www.fz-juelich.de/ias/jsc/high-q-club
 - Download our technical report: FZJ-JSC-IB-2015-01 http://juser.fz-juelich.de/record/188191