

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften

SuperMUC Extreme Scale-Out Phase 2, lessons learned

Nicolay J. Hammer Application Support Group LRZ

- Workshop Overview
- Some Job Statistics
- Some Results of single user groups
- Summary and Conclusions

"Extreme Scale-out" 28 days later

Friendly-User Phase of the recently brought up SuperMUC Phase 2 (3.6 PFlop/s peak, 2.8 Pflop/s Linpack, 86016 cores)

Available: **63.4** million core-h Used: **43.8** million core-h

41 Scientists from 14 Institutes14 Applications running on full system

Extreme Scale-out Phase2, lessons learned

Ferdinand Jamitzky¹, Helmut Satzger¹, Nicolay Hammer¹, Momme Allalen¹, Alexander Block¹, Markus M. Müller¹, Anupam Karmakar¹, Matthias Brehm¹, Reinhold Bader¹, Luigi Iapichino¹, Antonio Ragagnin¹, Vasilios Karakasis¹, Dieter Kranzlmüller¹, Arndt Bode¹, Herbert Huber¹, Martin Kühn², Rui Machado², Daniel Grünewald², Philipp V. F. Edelmann³, Friedrich K. Röpke³, Markus Wittmann⁴, Thomas Zeiser⁴, Gerhard Wellein⁵, Gerald Mathias⁶, Magnus Schwörer⁶, Konstantin Lorenzen⁶, Christoph Federrath⁷, Ralf Klessen⁸, Karl-Ulrich Bamberg⁹, Hartmut Ruhl⁹, Florian Schornbaum¹⁰, Martin Bauer¹⁰, Anand Nikhil¹¹, Jiaxing Qi¹¹, Harald Klimach¹¹, Hinnerk Stüben¹², Abhishek Deshmukh¹³, Tobias Falkenstein¹³, Klaus Dolag¹⁴, and Margarita Petkova¹⁴ ¹ LRZ, Boltzmannstrasse 1, 85748 Garching b. Muenchen http://www.lrz.de ² CCHPC - Fraunhofer ITWM, Fraunhofer Platz 1, 67663 Kaiserslautern http://www.gpi-site.com ³ Heidelberger Institut f
ür Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany ⁴ Erlangen Regional Computer Center (RRZE), University of Erlangen-Nürnberg, Martensstr. 1, 91058 Erlangen, Germany ⁵ Department of Computer Science, University of Erlangen-Nürnberg, Germany ⁶ Lehrstuhl f
ür Biomolekulare Optik, Ludwig-Maximilians-Universit
ät M
ünchen, Oettingenstr. 67, 80538 München, Germany ⁷ Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia ⁸ Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg, Germany ⁹ Chair for Computational and Plasma Physics at the LMU, Munich ¹⁰ Chair for System Simulation, University of Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany ¹¹ Chair of Simulation Techniques & Scientific Computing, University Siegen ¹² Universität Hamburg, Zentrale Dienste, Schlüterstraße 70, 20146 Hamburg ¹³ Fakultät für Maschinenwesen, Institut für Technische Verbrennung, RWTH Aachen University, Templergraben 64, 52062 Aachen ¹⁴ Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 München, Germany

Abstract. During May and June 2015 LRZ conducted a friendly user operation block operation of the their upcoming new extension of SuperMUC called Phase 2 which consists of 86,016 Intel Haswell cores distributed to 6 islands resulting in a peak performance of 3.6 PFlop/s. Selected user groups had the opportunity to use the system for 28 days of continuous operation as so called "friendly users" and run jobs up to the whole system size. This work presents results obtained during this period and the lessons learned from the operational point of view.

Keywords: Supercomputing, HPC

SuperMUC Phase 2 System

- 6 Islands (86016 cores)
- each Island has 512 nodes (14336 cores)
- each node has 2 Intel Xeon E5-2697 (Haswell) with 14 cores, 64 GB
- Interconnect Infiniband FDR14, non-blocking/pruned fat tree

History of workshops

1. Workshop 2013

12 Applications (6 on 16 Islands):

BQCD, CIAO, Gadget3-XXL, GROMACS, LAMMPS, Nyx, Vertex3D, waLBerla, APES, SeisSol, ExaML, ICON

2. Workshop 2014 10+5 Applications:

Production runs:

3. Workshop 2015 14 Applications:

Ateles, FluidNN, GASPI, nsCouette, Alya System, Seven-league, ACRONYM, PSC, BQCD, psOpen GADGET, SeisSol, Vertex3D, CIAO, Intel HPCG

BQCD, SeisSol, GASPI, Seven-league, ILBDC, Iphigenie, FLASH, GADGET3, PSC, waLBerla, Vertex3D, LS1-Mardyn, CIAO, Musubi

14 Applications 2015

	Software	Application	
Volcano Mount Merap	BQCD	Quantumchomodynamics	
	SeisSol	Seismology	
	GPI-2 / GASPI	Global Adress Space Library	
	Seven-League Hydro	Stellar Astropysics	
	ILBDC	Lattice Boltzmann	
	Iphigenie	Molecular Dynamics	
<image/>	FLASH	Astrophysics CFD	
	Gadget	Cosmology	
	PSC	Plasmaphysics	
	waLBerla	Lattice Boltzmann	
	Musubi	Lattice Boltzmann	
	CIAO	CFD, Combustion	
	Vertex3D	Stellar Astrophysics	
	LS1-Mardyn	Material Science	

Achievments

- Largest simulation of interstellar turbulence (10,000^3 Cells)
- Factor 100 better resolution for molecular spectra
- 2 Applications with sustained PFLOP/s Performance (SeisSol and LS-Mardyn) for more than 20 hours
- Strong scaling of a seismic reconstruction problem using GPI-2 (from 16 hours to 55 seconds)

Top users

TOP10 Users

Total available:

63,432,000 core hours Total used:

43,758,430 core hours Utilisation:

68.98%

ΤΟΡ	User	Million Core hours
1	di72hod2	15.2
2	lu78qer5	6.4
3	di56dok2	4.7
4	lu78maw4	2.3
5	di73qeb	2.0
6	lu79hah2	1.8
7	lu24viv7	1.1
8	a2815ae	0.98
9	di98wul	0.80
10	di98bix	0.55

Extreme Scale-Out Phase 2

12.5.2015 - 12.6.2015 30 (28) days

Nightly Operation: Daytime Operation: general queue max 3 islands special queue max 6 islands (full system, dedicated)

6751 jobs (> 1 min) 2054 jobs (>10 min)

general	special	test	tmp1
3600	1567	1575	9

Jobs by users:

- dedicated slots
- weekends
- production
- scaling/tests

Queues:

- Special (6 Islands, daytime)
- Test (max 30min)
- General (max 2 hours)
- jobs in Special/General
 - production runs
 - scaling/test run
- series of scaling runs (script)

Timeline May 12th – June 15th (jobs > 10 min)

Queues:

- Special (6 Islands, daytime)
- Test (max 8 nodes)
- General (max 3 Islands)
- jobs in Special/General
 - weekends
 - "back filling"
- series of scaling runs (script)

Timeline Tasks/Node (jobs > 10 min)

Jobs by users

- pure MPI
 - task/node = 28
- hybrid MPI+OpenMP
 - task/node = 1,2,4
- hyper threading
- scaling task per node

Jobs by users

- max. ~300 W/node
- performance optimization
- type of algorithms
- scaling clock speed

Jobs by users

- power/node vs.
 - number of nodes
 - clock speed
 - job setup
- job failures
 - idle nodes
 - hanging jobs

ILBDC (RRZE, FAU Erlangen)

1.2

1.4

1.6

1.8

frequency

2.0

2.2

2.4

2.6

- clock speed in-sensitive
- energy efficient computing

FLASH (Uni Heidelberg)

Seven-League Hydro (Uni Würzburg)

- 3D stellar evolution

 low Mach number
 implicit t-steps
 (overcome CFL)
 reduced art.
 dissipation
- pure MPI
- MPI+OpenMP
- 2016^3 grid
- 50 TB memory

Iphigenie (LMU München) Irz

128 replicas •

•

•

ullet

scaling reference @ 5376 cores

PSC (LMU München)

SuperMUC Phase-II scaling - total parts/s

- <u>Plasma Simulation Code</u> (PSC) is a Particle-In-Cell code for solving the ext. Maxwell-Vlasov and Maxwell-Vlasov-Boltzmann equation
- set of strong scaling tests
- improvements of task-local I/O scheme

waLBerla (FAU Erlangen)

Musubi (Uni Siegen)

BQCD (LRZ,FU Berlin)

Strong Scaling of BQCD on SuperMUC Phase 2

- Berlin Quantum Chromodynamics
 package (BQCD)
- performance of internal CG solver (95% of execution time)
- setup needs to fit the fabric
- pure MPI: super-linear/linear scaling up to 2/4 islands
- beyond 3 islands hybrid MPI+OpenMP favorable

CIAO (RTWH Aachen)

Figure 1: CIAO Strong Scaling

CIAO was completely developed at the Institute for Combustion Technology (RWTH) and Sogang University.

- pure MPI parallelization
- strong scaling: large eddy simulation
- compressible Navier-Stokes solver
- 5 stage expl. Runge Kutta
- high order WENO scheme

lrz

GASPI/GPI-2 (Fraunhofer ITWM)

Problem execution time reduced in strong scaling from 16h to 55s

GADGET (USM/C2PAP/LRZ)

Summary & Conclusions

- finding hardware bugs
 - unusual usage pattern
 - only one application a time
 - a final accept. stress test
 - experienced users

• MPI/OpenMP

17

- stack size per node gets significant (performance vs. memory)
- OpenMP/MPI hybrid parallelization is favorable
- efficient parallel IO gets more and more important

- preparation is everything
 - scaling tests on lower level
 - OpenMP/MPI balance
 - selection of input cases
 - checkpoints / restart files
 - plan I/O strategy (MPI-IO, p-HDF5, p-netCDF)
 - risk management
 - Plan B input case
 - debug test cases
 - debug strategies
 - expect the unexpected ;-)

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften

Thanks for your Attention

- Special Thanks to the ADMINS at LRZ
- Thanks to IBM operation support
- Thanks to our users for good collaboration

- 1. BQCD / Quantum Physics (M. Allalen)
- 2. SeisSol / Geophysics, Seismics(S. Rettenberger)
- 3. GPI-2/GASPI / Toolkit for HPC (M. Kühn)
- 4. Seven-League Hydro / Computational Fluid Dynamics CFD (P. Edelmann)
- 5. ILBDC / Lattice Boltzmann CFD (M. Wittmann)
- 6. Iphigenie / Molecular Dynamics (G. Mathias)
- 7. FLASH / CFD (L. lapichino and C. Federrath)
- 8. GADGET / Cosmological Dynamics (K. Dolag)
- 9. PSC / Plasma Physics (K. Bamberg)
- 10. waLBerla / Lattice Boltzmann CFD (F. Schornbaum)
- 11. Musubi / Lattice Boltzmann CFD (A. Nikhil, J. Qi, H. Klimach, S. Roller)
- 12. Vertex3D / Stellar Astrophysik (T. Melson, A. Marek)
- 13. LS1-Mardyn / Material Science (N. Tchipev)
- 14. CIAO / Combustion Simulation (A. Deshmukh, T. Falkenstein)

Paper Abstract

- Preparation is everything
- Finding Heisenbugs is difficult
- MPI reaches at its limits
- hybrid is the way to go
- I/O libraries are more important than ever
- The extreme scale-out workshop at LRZ again showed that preparation of a simulation campaign is crucial for the success of the project. This preparation has to address scaling tests, choice of OpenMP/MPI balance, interval for check- point and restart files, good preparation of input files, I/O strategy, and risk management. Under these conditions it was possible to use a brand new system like SuperMUC Phase 2 directly after installation and obtain scientific results from the start.
- A big advantage of the extreme scale-out workshop was that only one code was running at a time and this code was filling up the whole system. Thus hardware bugs were much easier to detect and resolve. One especially hard to find bug was a combination of two timeouts and a hardware problem. During normal user operation this error would have been close to impossible to detect because of the low probability of two errors occurring simultaneously for smaller jobs.
- MPI is at its limits. The stack size of the MPI stack is growing on each node and for a system of almost 100,000 cores it occupies a significant amount of memory. The startup time can exceed the range of minutes and become a significant part of the overall run time. One way to overcome this bottleneck is the use of hybrid OpenMP/MPI programming models. However, this implies very deep system knowledge on the user side, since process pinning and the choice of the OpenMP/MPI balance has to be evaluated and decided by the user. Furthermore, I/O strategies have to be developed and tested before the complete system can be used. In the future I/O libraries which can mediate this task become more and more important.
- Even for hybrid openMP/MPI Set-ups with a single MPI-task per node, problems arise due to internal limit of the MPI send/receive buffer. This limit is caused by the Integer*4 Byte implementation of the MPI index values. Such problems can be overcome by using application internal buffering.