

Simulating Morphologically Detailed Neuronal Networks at Extreme Scale

Aleksandr Ovcharenko (aleksandr.ovcharenko@epfl.ch)

Pramod Kumbhar, Michael Hines, Francesco Cremonesi, Timothee Ewart, Stuart Yates, Felix Schuermann and Fabien Delalondre **Blue Brain Project Approach**

Constructing virtual brain model by reverse engineering biological components

Different Scale ... Different Simulators ...

••

A simulator for spiking neural network models that focuses on dynamics, size, structure

initiative

nes

Different Scale ... Different Simulators ...

Nest

A simulator for cells with complex anatomical and biophysical properties.

Different Scale ... Different Simulators ...

Nest

A simulator for cells with complex anatomical and biophysical properties.

A simulator for detailed models of neuronal signaling pathways at molecular level

Different Scale of Neuronal Simulators

initiative

nes

Nest

A simulator for spiking neural network models that focuses on dynamics, size, structure

A simulator for detailed models of neuronal signaling pathways at molecular level

Model Reconstruction

Need to solve O(5k) non-linear mechanisms to assemble O(400) dof 3-diagonal sparse matrix

NEURON Data Structures

Biologist view: compartment model Memory View: In memory representation of neurons

NModl DSL to .C to Support Scientists


```
DERIVATIVE states {
   LOCAL mAlpha, mBeta, mInf, mTau, lv, qt
   qt = 2.952882641412121
   lv = v
   if(lv == -32){
        lv = lv+0.0001
   }
   mAlpha = mAlphaf(lv)
   mBeta = mBetaf(lv)
   mInf = mAlpha/(mAlpha+mBeta)
   mTau = (1/(mAlpha+mBeta))/qt
   m' = (mInf-m)/mTau
   v = lv
}
```

Scientists use domain specific language NModl

Each .mod mechanism file is converted to .c

NEURON Workflow

Static Load Balancing Workflow

Circuit Building

Neuronal problem domain created by neuroscientists

Cell Computational Complexity

LPT algorithm calculates number of compartments & channels and their computational complexity

Neuron Groups

Construct neuron groups based on complexity factors

Less than 2% load imbalance on IBM Blue Gene/Q

Going Further in Scale

Problem size and memory requirements for future simulations

parameters / brain type	rat	monkey	human
number of neurons	1 x 10 ⁸	1 x 10 ⁹	8 x 10 ¹⁰
number of synapses	5 x 10 ¹¹	1 x 10 ¹³	1 x 10 ¹⁵
number of state variables	3.3 x 10 ¹²	6.3 x 10 ¹³	6 x 10 ¹⁵
estimated size in memory	100 TiB	1 PiB	80 PiB

2008	2010	2012
IBM Blue Gene/L	IBM Blue Gene/P	IBM Blue Gene/Q
8,192 cores	65,536 cores	65,536 cores
10k neurons	217k neurons	756k neurons

CoreNeuron Development Decision

Why?

- Simulate bigger models
- Decrease time to solution
- Support scalability at extreme scale
- Portability & extensibility on any HPC platform

CoreNeuron Development Decision

How?

- Have reduced & optimized data structures
- Vectorization using autovectorization
- Hybrid MPI / OpenMP with single MPI process per node
- Code reduction
 - Model configuration data structured are removed
 - Support of interpreter languages is not included
 - 15k lines vs 300k lines in NEURON

Highlights of CoreNeuron

- Simulation functionality of NEURON
- Reduced memory footprint (2MB/neuron vs 12MB/neuron)
- Three levels of parallelism
 - Nodes: collection of cell groups
 - Threads: each cell group has its (OpenMP) thread
 - Vectorization: computed mechanisms per cell group
- Spike delivery is done via MPI_Allgather(v)

Where is CoreNeuron in Scale

Problem size & memory requirements for future simulations

parameters / brain type	rat	monkey	human
number of neurons	1 x 10 ⁸	1 x 10 ⁹	8 x 10 ¹⁰
number of synapses	5 x 10 ¹¹	1 x 10 ¹³	1 x 10 ¹⁵
number of state variables	3.3 x 10 ¹²	6.3 x 10 ¹³	6 x 10 ¹⁵
estimated size in memory	100 TiB	1 PiB	80 PiB

Today: the order of the rat brain size on a full JUQUEEN

NEURON & Neurodamus vs CoreNeuron

NEURON & Neurodamus vs CoreNeuron

Use Case Description

- Initial circuit: 3 million neurons and 9 billion synapses
- Ready for in-memory duplication. Default size: 24 million neurons
- I/O size to read: 5 TB

IBM Blue Gene/Q Node Performance Analysis

- Most kernels (ProbAM Current, etc.) memory bandwidth limited
- Some (*Ih State*, *Na State*) can be vectorized to get better performance

Blue

Brain

- 1 MPI task per node, 64 OpenMP threads per node
- 10 milliseconds of biological time
- 24 million neurons for each run (from \sim 90% of DRAM to \sim 10% of DRAM)
- No uniform distribution of data across 20, 24, 28 racks <=> artificial load imbalance
- Up to 16 racks: 10% of strong scaling efficiency loss

- 1 MPI task per node, 64 OpenMP threads per node
- 10 milliseconds of biological time
- 2906 neurons per node: from 12 million to 82 million neurons (~50% of DRAM)
- Parallel efficiency is nearly optimal up to 20 racks

Closing Remarks

- Full JUQUEEN machine simulation
 - 28 racks, utilizing all 1,835,008 threads
 - 15.9 GB of node DRAM, 155 million neurons (duplicated circuit)
- Memory reduction 6-8 times comparing to NEURON
- Improved on-node performance, ready for larger scale

Further Steps

- Ongoing reduction of memory footprint
- Disk-to-memory data management: utilize HDF5
- Implementation simplification
- Introduction of clear C++ API
- Light-weight python interface for high-level API
- Exposing more parallelism in mechanisms & spike exchange