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Blue Brain Project Approach

Constructing virtual brain model by reverse engineering
biological components
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Different Scale ... Different Simulators ...
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Different Scale of Neuronal Simulators
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Model Reconstruction
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NEURON Modeling

Neurotransmitter Neurotransmitter
released into synapse attached to receptor

400 Compartments / Neuron

Synapse
3.5k / Neuron

Neurotransmitter Enzyme that destroys
stored in vesicles neurotransmitter

http://www.sailhome.org/
Concerns/Excitotoxins.html
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Nucleus
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lon Channel
3-5 / Compartment

Synapses and lon Channels

referred as mechanisms o/ llustration by J.P. Cartailler. Copyright

~ 2007, Symmation LLC

Need to solve O(5k) non-linear mechanisms to assemble
O(400) dof 3-diagonal sparse matrix



NEURON Data Structures
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NModl DSL to .C to Support Scientists

DERIVATIVE states {
LOCAL mAlpha, mBeta, mInf, mTau, 1lv, qt

2.952882641412121
v

if(lv == -32){
1v = 1v+0.0001 mod2c
} ﬁ

mAlpha = mAlphaf (1v)
mBeta = mBetaf (1v)

qt
1v

mInf = mAlpha/(mAlpha+mBeta)
mTau = (1/(mAlpha+mBeta))/qt
m’ = (mInf-m)/mTau
v =1v
}
Scientists use domain specific Each .mod mechanism

language NModl file is converted to .c



NEURON Workflow
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Static Load Balancing Workflow

3

Circuit Building Cell Computational Complexity Neuron Groups
Neuronal problem domain LPT algorithm calculates number of Construct neuron groups based
created by neuroscientists compartments & channels and their on complexity factors

computational complexity

Less than 2% load imbalance on IBM Blue Gene/QQ
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Going Further in Scale

Problem size and memory requirements for future simulations

parameters / brain type | _rat__| _monkey | _human _

number of neurons 1x 108 1x10° 8 x 1010
number of synapses 5x10M 1x10"3 1x 10"
number of state variables 3.3 x 1012 6.3 x 1013 6 x 1015

estimated size in memory 100 TiB 1 PiB 80 PiB
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NEURON/Neurodamus: 12 MiB/Neuron

Fails at 756k neurons
Every process stores
900 MiB of global
information

2008 2010 2012

IBM Blue Gene/LL  IBM Blue Gene/P  IBM Blue Gene/Q
8,192 cores 65,536 cores 65,536 cores

10k neurons 217k neurons 756k neurons
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CoreNeuron Development Decision

Why?

* Simulate bigger models

* Decrease time to solution

* Support scalability at extreme scale

* Portability & extensibility on any HPC platform



CoreNeuron Development Decision

How?

* Have reduced & optimized data structures

* Vectorization using autovectorization

* Hybrid MPI / OpenMP with single MPI process per node

* Code reduction
* Model configuration data structured are removed

* Support of interpreter languages is not included

e 15k lines vs 300k lines in NEURON



Highlights of CoreNeuron

* Simulation functionality of NEURON

Reduced memory footprint (2MB/neuron vs 12MB/neuron)

* Three levels of parallelism
* Nodes: collection of cell groups
* Threads: each cell group has its (OpenMP) thread

* Vectorization: computed mechanisms per cell group

Spike delivery is done via MPI_Allgather(v)



Where is CoreNeuron in Scale

Problem size & memory requirements for future simulations

parameters / brain type | _rat _| _monkey | _human _

number of neurons 1x 108 1x10° 8 x 1010
number of synapses 5x10™ 1x10"3 1x 10"
number of state variables 3.3 x 107 6.3 x 1013 6 x 101°
estimated size in memory 100 TiB 1 PiB 80 PiB

Today: the order of the rat brain size on a full JUQUEEN
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NEURON & Neurodamus vs CoreNeuron

build EssentialData load
subset for subset_i subset
Column ;
Memory Memory Sg;fﬁid
36.3 TB 5.45TB
(12MB/Neuron) (1.8MB/Neuron)
Circuit Model Building Simulator
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NEURON & Neurodamus vs CoreNeuron

CoreNEURON

All N Subsets

EssentialData load all

for subsets
subset_N-1

Memory

38.15TB

Simulated
Input Circuit Simulator Circuit
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Use Case Description

Single column

* Initial circuit: 3 million neurons and 9 billion synapses
* Ready for in-memory duplication. Default size: 24 million neurons

e [/Osizetoread: 5 TB
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IBM Blue Gene/QQ Node Performance Analysis
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* Most kernels (ProbAM Current, etc.) memory bandwidth limited

* Some (Ih State, Na State) can be vectorized to get better performance
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Wallclock time [s]

Strong Scaling Studies

Time breakdown for the strong scaling studies
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e 1 MPI task per node, 64 OpenMP threads per node

* 10 milliseconds of biological time

e 24 million neurons for each run (from ~90% of DRAM to ~10% of DRAM)

* No uniform distribution of data across 20, 24, 28 racks <=> artificial load imbalance
* Up to 16 racks: 10% of strong scaling efficiency loss

23



Wallclock time [s]

Weak Scaling Studies

Time breakdown for the weak scaling studies
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Number of racks

* 1 MPI task per node, 64 OpenMP threads per node

e 10 milliseconds of biological time

* 2906 neurons per node: from 12 million to 82 million neurons (~50% of DRAM)

 Parallel efficiency is nearly optimal up to 20 racks
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Closing Remarks

e Full JUQUEEN machine simulation
* 28 racks, utilizing all 1,835,008 threads

* 15.9 GB of node DRAM, 155 million neurons (duplicated
circuit)

* Memory reduction 6-8 times comparing to NEURON

* Improved on-node performance, ready for larger scale



Further Steps

* Ongoing reduction of memory footprint

* Disk-to-memory data management: utilize HDF5
* Implementation simplification

* Introduction of clear C++ API

* Light-weight python interface for high-level API

* Exposing more parallelism in mechanisms & spike exchange



