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Observations on solar prominences

Prominences
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Observations on solar prominences
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Observations on solar prominences

Prominence and coronal cavity
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Observations on solar prominences

Prominence and coronal cavity
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Observations on solar prominences

- Prominence, cavity, and streamer
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Observations on solar prominences

- Observations of in situ condensation in a cavity
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Observations on solar prominences

Observations of in situ condensation in a cavity
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Models of Prominence and Cavity

Morphological sketch of prominence and cavity
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Figure 2. Coronal cavities observed in the SOHO EIT Fe XV 284 A images (a) and a scheme
of a coronal flux rope (b) (courtesy: SOHO/EIT Consortium).

A helical magnetic flux rope hosts a tunnel-like cavity with a
prominence in the lower part. (Boris Filippov et al. 2015, JAA)
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9 Models of Prominence and Cavity
@ Magnetic Models of Prominences



Models of Prominence and Cavity
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Magnetostatic models

@ K-S models for normal polarity prominences (Kippenhahn & Schiiter
1957, Anzer 1972, Malherbe & Priest 1983)
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@ K—R models for inverse polarity prominences (Kuperus & Raadu 1974,
Aner & Priest 1985, Low & Hundhausen 1995)
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MHD models: birth of a flux rope
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Birth of a flux rope in 1 MK corona
caused by systematic converging
flows at the bottom formation

@ converging flows bring feet of
inner loops together

@ head-to-tail connection of
loops at their feet => helical
field lines

@ new helical field lines wrap
around older ones => a large
scale helical flux rope

@ The flux rope rises, expands,
and relaxes => stable state

(Xia et al. 2014, ApJ)



Models of Prominence and Cavity
9000000000000

Outline

9 Models of Prominence and Cavity

@ Formation of prominence plasma
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Thermal instability theory in uniform plasma
heat-loss function L = R — H — kV2T: the (M) +xk2<0
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1D HD models

@ 1D hydrodynamic simulations along individual magnetic loop
@ localized heating near loop feet => chromospheric evaporation

@ strong radiation R = n?A(T)=> thermal non-equilibrium =>
catastrophic cooling => condensation
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(Antiochos et al. 1999; Karpen et al. 2001, 2005, 2008; Xia et al. 2011).
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1D Evaporation-condensation model
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(Xia et al. 2011)
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Evidence of thermal instability

Evolution of loop center in case S1
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@ isochoric criterion (Parker 1953)
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@ isobaric criterion (Field 1965)
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@ Both criteria turn to significantly
negative when catastrophic cooling
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3D views of multiple 1D model assembly

(Luna et al. 2012, ApJ)
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2.5D prominence formation (1/2) (xia et al. 2012, ApJ)

localized heating concentrated at
strong B, regions:

First condensation: Time=84 Min,
Height=25.4 Mm, Shear Angle=28°
Shocks are launched and damped
quickly. forced left-right symmetry by
only simulating the right half.
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Thermal Instability

Evolution at the first condensation @ isochoric thermal instability
site criterion Cp, isobaric criterion
Cr

g © Both criteria turn to significantly
% negative when catastrophic
cooling.
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2.5D prominence formation (2/2) (keppens and Xia 2014, ApJ)

coronal condensation in magnetic dips of 2.5D arcade, asymmetric
dynamics develop (coronal rain, flux rope)
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3D prominence formation (xia et al. 2014, ApJL)
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\ Dynamic condensation in AlA synthetic views
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AlA synthetic views of the prominence and cavity
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@ Protruding tail (‘'barb’) extends to lower altitude

@ "horns" extend from the top of the prominence to the upper cavity in 193
and 211 bands

@ density depletion in the cavity (20 ~ 30 %), 2 MK temperature



Recent 3D modeling of Prominence Formation in a Flux Rop

Outline

e Recent 3D modeling of Prominence Formation in a Flux Rope
@ Formation of a flux rope by flux cancellation



Recent 3D modeling of Prominence Formation in a Flux Rop

Model initial setup

@ Use Cartesian 3D box, horizontal axes x (-100,100) Mm and y
(-60,60) Mm, vertical axis z (0, 80) Mm

@ isothermal MHD with constant temperature Ty = 1 MK and gravity, no
energy equation
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Recent 3D modeling of Prominence Formation in a Flux Rop
0000

Numerical methods and boundary conditions

@ code: isothermal MHD solver of MPI-AMRVAC (Porth et al 2014,
ApJS)

@ scheme: HLL and Cada slope limiter, three-step Runge—Kutta

@ mesh: 3-level AMR, resolution: 400 x 240 x 240, 333 km per cell

@ boundary conditions:
velocity: shearing and converging horizontal flows at the bottom;
zero velocity at other boundaries
magnetic field: zero gradient extrapolation and modified normal
field ensuring divergence free at the bottom; fixed at others.
density: continuous at side boundaries, fixed at the bottom,
gravitational hydrostatic stratification at the top

@ GLM-MHD method to maintain divergence free of magnetic field
(Dedner et al. 2002, JCP)
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time series of flux rope formation
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Recent 3D modeling of Prominence Formation in a Flux Rop
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Outline

e Recent 3D modeling of Prominence Formation in a Flux Rope

@ Evaporation-condensation in the 3D flux rope



Recent 3D modeling of Prominence Formation in a Flux Rop
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Initial state
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@ restart from the isothermal flux rope and add energy equation

@ rewrite pressure p(z) and density p(z) according to hydrostatic
stratification from chromosphere (9600 K, 10'® cm~2) to corona
(1 ~ 1.6 MK)

@ nearly force-balance and thermal non-equilibrium
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Assumptions and equations

@ MHD equations where pio = p + B?/2, p = 2.3nuks T,
p=1.4myny, E = p/(y - 1) + pv?/2 4 B?/2u:

dp
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@ The energy equation with parameterized heating, radiative
cooling, and field-aligned thermal conduction
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Thermal sources and boundary conditions

@ MHD solver in MPI-AMRVAC
@ mesh: 4-level AMR, resolution: 800 x 480 x 480, 166 km per cell

@ explicit central difference scheme to solve field-aligned
(k = xjegep) thermal conduction separately using RKL2 Super
TimeStepping scheme (Meyer et al. 2012, MN)

@ optically thin radiative cooling, R = 1.2n§1/\(T) using an exact
integration scheme (Townsend 2009, ApJS)

@ background heating Hy = cye=?/* with cg = 10~* ergcm=23 s~! and
A=60Mm

@ boundary conditions:
velocity: zero velocity
magnetic field: fixed at all boundaries
pressure and density: continuous at side boundaries, fixed at the
bottom, gravitational hydrostatic stratification at the top
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Relaxing to an equilibrium with background heating
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Add localized heating at footpoint regions

f(t)e if z< zh 1 if t>tr
where ¢y = 102 ergecm=3s7!, zh =5 Mm and H;, = 3.16 Mm

{f(t)c1e—((z—zh)/Hm)2 if z> zh () {(t—tr)/tr ift<tr
1= =
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Restart simulation from the equilibrium with total heating H = Hy + H;
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3D condensations in the flux rope

Shown by density contours: yellow 10'® cm=3; red 2 x 1070 ¢cm3

Time: 106.0




Recent 3D modeling of Prominence Formation in a Flux Rog
000000080000000000

\ AMR structure in a slice

Time: 150.0
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Particle tracers tracking field lines
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Technique of LOS synthetic view

@ Flux of imaging instrument at band i => LOS integral through the
plasma

F,:fnge,-(ne,re)d/ [DN s~1], (1)

@ The instrumental response Gj(ne, T.) => 2D look-up tables using
CHIANT]I version 7

@ LOS integral by interpolation-based ray-tracing with a uniform grid
of rays passing through the AMR grid

@ typical bands for prominence => EUV wavelength bands 304, 171,
193, and 211 A SDO/AIA => temperatures 0.08, 0.8, 1.5up to 1.8
MK, respectively

@ emission behind plasma with density higher than 2 x 101 cm=3 is
blocked
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\ AlA synthetic views along prominence axis

t=7.2min
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t = 203.2 min
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- AlA synthetic views on flank of prominence
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- AlA synthetic views from the top
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Conclusions

@ Thermal instability is responsible for radiative condensation in
solar corona.

@ Shearing and converging flows at the bottom of corona drive the
formation of an elongated magnetic flux rope from an initial
sheared arcade.

@ Localized heating at two feet of the flux rope evaporates plasma
from chromosphere to corona in the flux rope where radiative
thermal instability leads to plasma condensations into prominence
plasma in shapes of threads and blobs

@ prominence mass cycling: chromospheric evaporation => coronal
condensation => falling back to chromosphere

@ SDO/AIA EUV synthetic axial limb views show the prominence in
an elliptical coronal cavity with a core cavity above the prominence
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