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I Fluid models: Good for global dynamics and energetics

I Fail to tell you anything about kinetic processes

I Kinetic models: The opposite...

I Assume fluid models are largely correct and see how particles with given
energies would behave in the overall flow.

I Use for further diagnostic, see applications...

Particle tracing and acceleration in MHD evolution
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Examples from recent literature

Trapping of solar wind particles in earth magnetosphere

Figure : LFM model of the earth magnetosphere, Credit: CISM

Particle tracing and acceleration in MHD evolution
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Examples from recent literature

Trapping of solar wind particles in earth magnetosphere

belt at L!2:5 during the 24 March 1991 storm by
following electron guiding centers restricted to the
equatorial plane in a pure dipole magnetic field traversed
by an analytically modeled bipolar electric field pulse. The
model was found to reproduce the flux peak in energy at
13 MeV and observed electron drift echoes well. The
March 1991 event was also modeled by Elkington et al.
(2002) using an MHD-guiding center equatorial test-
particle simulation, again reproducing the flux peak in
energy at 13 MeV and L!2:5. The 21 February 1994 event
was modeled in a separate study limited to equatorial
plane guiding center test-particle dynamics with conclu-
sions similar to the 24 March 1991 event (Hudson et al.,
2006). In each of these studies an outer zone source
population was used. Observations of trapping in the
magnetosphere and transport to low L of SEPs suggest that
SEEs (solar energetic electrons) may provide an additional
source for the formation of 410 MeV electron belts in the
inner zone, which is the focus of the study presented in
this paper.

The October–November 2003 geomagnetic storms
marked the beginning of the strong activity characterizing
the declining phase of the solar cycle no. 23. During the
Halloween storm ultra-relativistic electrons were injected
well inside the slot region producing a stably trapped
radiation belt population that persisted for several
months (Looper et al., 2005). The top panel in Fig. 1
shows 10–20 MeV electron count rates vs. L and time from
the beginning of October 2003 through the end of June

2004. The new belt appears in the top panel of Fig. 1 as an
enhancement in fluxes near L ¼ 2 beginning ! February
2004; and it is evident in the figure that weak fluxes, just
above background level, extend back in time to October–
November 2003. Looper et al. attribute the !4 month
delay in the appearance of peak fluxes at the Solar
Anomalous and Magnetospheric Particle Explorer
(SAMPEX), in low Earth orbit, to a slow pitch angle
diffusion from a population initially mirroring near the
equatorial plane (i.e., a pitch angle distribution initially
strongly peaked near 90#). For comparison, the bottom
panel in Fig. 1 shows 2–6 MeV electron count rates, also
from the Proton/Electron Telescope (PET) instrument on
SAMPEX. A new belt of 2–6 MeV electrons appears in and
below the slot region 1–3 days following the 29 October
2003 storm onset (Baker et al., 2004). This newly formed
2–6 MeV belt has been attributed both to adiabatic
energization and transport of electrons due to strongly
enhanced magnetospheric ultra-low frequency (ULF)
waves (Loto’aniu et al., 2006) and to local heating by
whistler mode chorus waves (Horne et al., 2005; Shprits
et al., 2006). The striking difference in time scales and
locations of the appearance of Halloween storm electrons
for these two different energy ranges suggest that a
different physical process is responsible for the formation
of the new belt in each case.

Two interplanetary shock related mechanisms have
been shown to be effective at providing SEPs prompt
access to L-shells below L!4. First, a suppression in
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Fig. 1. Top: 10–20 MeV electron count rate from the PET instrument on SAMPEX from 1 October 2003 to 1 July 2004. The vertical red line at 29 October
2003 is an SEE event (Looper et al., 2005). Bottom: 2–6 MeV electron flux from the PET instrument on SAMPEX with the same timescale as above.

B.T. Kress et al. / Journal of Atmospheric and Solar-Terrestrial Physics 70 (2008) 1727–17371728

fields encounters the magnetopause or weak tail fields.
These particles are typically lost to the simulation outer
boundary. The majority of test-particles used to produce
the distributions presented later in this work are switched
from Lorentz to guiding center mode once and remain in
guiding center mode for the remainder of the simulation.

2.2. Numerically determined flux

Particle fluxes are measured directly in the code using
a numerical detector. The detector is a disk in the
equatorial plane. The test-particle flux is measured by
counting particles as they pass through the disk and
binning the results in position, energy, and equatorial
pitch angle space (xi; Tj;a0k

). The flux integration time dt
is chosen to be less than the smallest particle bounce
period (dtttbmin

), so that we do not over sample a subset
of trajectories with small bounce periods. For this work
dt!0:05 s.

The directional flux entering a detector is in general a
function of position x, direction of incidence û, kinetic
energy T, and time t, and may be determined using

jðx; û; T ; tÞ ¼
dN

dA cos y dO dT dt
, (7)

where dN is the number of particles striking a surface of
area dA with directions of incidence lying inside solid
angle dO oriented along the unit vector û, with kinetic
energies in the interval dT, during the time interval dt. y is
the angle between the normal to dA and the û direction
(Roederer, 1970, pp. 85–86). If the distribution is uniform
in gyro-phase, the direction of incidence of the particles
will only be a function of pitch angle a. In this case the
solid angle dO can be expressed 2p sina da. The direc-
tional flux in the ijkth bin, with i, j, and k indexing

position, kinetic energy, and equatorial pitch angle,
respectively, is obtained from the code using

jðxi; Tj;a0k
Þ ¼

P
wn

Number of flux

counts in ijkth bin

dAi cos y 2p sinak dak dTj dt
, (8)

where wn is the particle weight (defined below). Note that
there is a zero in the denominator for equatorially
mirroring particles. This difficulty is removed by choosing
equatorial pitch angle bins on either side of a0 ¼ 90%. For
simplicity, Eq. (8) is an expression for 0th order binning of
particle flux counts, i.e., equivalent to the nearest grid point
(NGP) method (e.g., see Parker, 2002). A linear weighting,
which also includes a grid weighting factor for interpolating
flux counts to (xi; Tj;a0k

) grid points, is used in the code to
reduce noise in the resulting distribution function.

2.3. Particle weighting

As a post-processing step, test-particles were weighted
with an energy spectrum obtained from ACE, SAMPEX and
GOES-11 spacecraft during the 29 October 2003 SEE event
(Mewaldt et al., 2005). The SEE spectrum used to weight
the test particle distribution is

jobservedðTÞ ¼
1:46& 108ð#=cm2-sr-MeVÞ

118 800 ðsÞ
T'4:27, (9)

where 118 800 s is the total fluence measurement interval
from the start of the SEE event at 11:00 UT on 28 October
2003 through 20:00 UT on 29 October 2003 over which
the SEE flux does not vary more than an order of
magnitude (from Figure 1 and Tables 3 and 7 in Mewaldt
et al., 2005). This spectrum (shown in Fig. 6c) is used to
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Fig. 3. Single electron trajectory computed in time-dependent fields from an MHD simulation of the 29 October 2003 SSC. The electron is launched into
the solar wind sunward of the magnetopause at r ¼ 15RE (although it does not appear in the figure until it is above the x–y plane), enters the
magnetosphere through the day side magnetopause, and is accelerated Earthward to !3:5RE by the SSC electric field pulse. The trajectory is initially
integrated using the Lorentz equation and is switched to a guiding center trajectory when eo0:01, indicated by the disappearance of the gyro motion. The
initial and final energies of the particle are !3 and 15 MeV, respectively.

B.T. Kress et al. / Journal of Atmospheric and Solar-Terrestrial Physics 70 (2008) 1727–1737 1731

Figure : SSE captured in magnetosphere in “Halloween storm”

Solar electrons and outer belt electrons establish a new > 10MeV radiation belt.
Kress et al. (2007) Kress et al. (2008)

Particle tracing and acceleration in MHD evolution
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Figure : Earth radiation belts
Particle tracing and acceleration in MHD evolution
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Trapping of solar wind particles in earth magnetosphere

MHD density produces a maximum electric field pulse of
!60 mV/m in the inner magnetosphere, which is not
sufficient to produce a significant >10 MeV belt. The run
with Kp = 2 produces a maximum electric field amplitude
!150 mV/m, only slightly larger than the run with Kp = 3.
[25] A time snapshot of Ef in the equatorial plane is

shown in Figure 5. Also shown in Figure 5 is the trajectory
of a single guiding center electron that is in drift resonance
with the pulse, moving with the crest of the pulse as it
propagates from the dayside to nightside. The initial and
final energies of the particle are !5 and 15 MeV,
respectively. The electron trajectory shown is equatorially
mirroring (equatorial pitch angle is 90!). A meridional plot
of the electric field magnitude (not shown) reveals that the
SSC electric field pulse is mainly in the equatorial plane,
thus preferentially accelerating equatorially mirroring par-
ticles which remain in the strongest portion of the pulse.
This effect is enhanced by an additional focusing of the
pulse into the equatorial plane as it enters the inner
magnetosphere.This result is illustrated in Figure 6 which
shows the SSC Ef at two separate time snapshots as it enters
the inner magnetosphere plotted in the noon-midnight
meridional plane in solar magnetic (SM) coordinates. The
pulse is focused into the equatorial plane as it enters the
inner magnetosphere. In the inner magnetosphere, the pulse
remains near the equatorial plane as it propagates toward the
nightside.

3.2. Test Particle Model Results

[26] In each run, !2.4 million test particle trajectories are
computed during an !5 min interval from the MHD
simulation that includes the initial impact of the interplan-
etary shock on the magnetosphere at !0600 UT, propaga-
tion of the resulting fast mode magnetosonic pulse through

the magnetosphere, and during several large transient ULF
oscillations following the arrival of the shock shown in
Figure 4. An overview of the weighted test particle radiation
belt results from the Kp = 3 case are shown in Figure 7.
Omnidirectional integrated >10 MeV fluxes are plotted in
the equatorial plane in SM coordinates at four snapshots in
time from the simulation. Since the initial model distribu-
tion has no particles with energies above 7 MeV, there are
initially zero >10 MeV fluxes. The initially localized
injection appears at !1500 local time. Figure 7 nicely
illustrates the source of the drift echoes observed by a
spacecraft particle detector [e.g., Blake et al., 1992,
Figure 1], i.e., a sudden appearance of heightened fluxes,
with higher energy particles reaching the detector before
lower energies due to a rB drift velocity dispersion of the
initially localized injection. At a fixed location there is a
gradual rise in fluxes as lower energies reach the detector
until a sudden drop in fluxes occurs when the detector’s
lower-energy cutoff is reached. Subsequent drift echoes are
gradually diminished by energy dispersion.
[27] Figure 8 shows 10 MeV equatorial pitch angle

distributions in the newly formed belt !5 min after storm
onset. To produce the distributions, weighted particle fluxes
are binned in dipole L-shell (radial distance in the equatorial
plane), energy, and equatorial pitch angle. In the case with
Kp = 3 the peak in 10 MeV flux occurs at L ! 3.0, with the
corresponding distribution shown in Figure 8b. Figure 8a
shows the 10 MeV equatorial pitch angle distribution inside
the flux peak, at L ! 2.5. Figures 8c and 8d show
distributions resulting from the run with Kp = 4, at the

Figure 5. Time snapshot of the azimuthal component of
the MHD model SSC electric field pulse in the equatorial
plane. The dashed line shows the trajectory of a single
adiabatically accelerated guiding center electron in drift
resonance with the pulse as it propagates from the dayside
to nightside. The initial and final energies of the particle are
!5 and 15 MeV, respectively.

Figure 6. MHD Ef peak at 6 RE and at 3 RE (two separate
time snapshots) on the dayside in the noon-midnight
meridional plane in solar magnetic (SM) coordinates.
Contours from "80 to "140 mV/m in steps of "20 mV/
m are shown. Dashed lines show magnetic field lines
through x = 6 RE and x = 3 RE traced in the MHD fields in
each respective time snapshot.
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snapshots over 200 days at increments of 10 days, starting
from the dark blue curve. The flux takes 1 to 2 months to
be discernable at the low equatorial pitch angles
observable by SAMPEX at !10 degrees (dashed line)
and 3 to 4 months for the steady state pitch angle profile
to be established, which is in agreement with the timescale
for the delay in the appearance of peak flux levels at
SAMPEX seen in Figure 1.

4. Summary and Discussion

[31] At energies in the 10s of MeV range the structure of
the inner zone radiation belts is largely shaped by a few
geomagnetic storms driven by high-speed interplanetary
shock compressions of the magnetopause. The MHD test
particle model results show that the 29 October 2003 SSC
electric field pulse produces a new belt of >10 MeV
electrons inside of L ! 3 with an average quiet-time outer
belt model source population assumed. The newly formed
>10 MeV electron belt has its equatorial pitch angle distri-
bution strongly peaked near 90! and becomes more peaked
with lower L as shown in Figure 8. There are two primary
reasons for the resulting peaked equatorial pitch angle
distribution in the new belt: (1) The electrons are acceler-
ated through conservation of the 1st adiabatic invariant
perpendicular to the magnetic field increasing p?/pk and
bringing their equatorial pitch angles closer to 90!, and
(2) the SSC electric field pulse is predominantly in the
equatorial plane, preferentially accelerating equatorially
mirroring particles that spend more time in the pulse. The

SSC electric field pulse is focused into the equatorial plane
as it propagates into the plasmasphere, which has been
added to the MHD fields immediately before the arrival of
the shock using a Kp-dependent empirical density model. In
general the effect of including a plasmaspheric density
model in the MHD simulations is to enhance the amplitude
of the SSC electric field pulse and decrease its speed in the
inner magnetosphere. It is necessary to include a realistic
plasmaspheric density in the MHD magnetospheric model
to produce an SSC electric field pulse large enough to
transport electrons over several L-shells producing a
significant >10 MeV belt. This is consistent with Gannon
et al. [2005] who find that an SSC E-field pulse !10 mV/m

Figure 8. Equatorial pitch angle distributions of 10 MeV
differential flux for various Kp and radial distances. The
asterisks show nonzero fluxes obtained with equation (8)
with 28 aok

bins uniformly spaced in cos ao between 0 and
180 deg. The solid line is a least squares fit to A sinn(ao)
yielding: (a) A = 3.2, n = 40; (b) A = 40, n = 22; (c) A = 12,
n = 30; (d) A = 20, n = 18. Note that in each figure, the axis
has been scaled to span 2 decades and the maximum value
of the flux has been located the same distance below the top
of the vertical axis so that the rate the fluxes fall off from
their maximum values can be compared.

Figure 9. Bounce-averaged equatorial pitch angle diffu-
sion coefficients calculated according to quasi-linear theory
in the high density approximation [Lyons, 1974a, 1974b]
using the computational techniques of Albert [1999] and
parameters of Horne et al. [2005a, 2005b] (See text for
model parameters). The solid curve shows the resulting
diffusion coefficients for 10 MeV electrons, while the
dashed curve shows 1 MeV values for comparison.

Figure 10. Equatorial pitch angle distribution of 10 MeV
electrons evolved using (10) over 200 days at increments of
10 days, starting from the dark blue curve. The flux takes
1 to 2 months to be discernable at the low equatorial pitch
angles observable by SAMPEX at !10 degrees (dashed
line) and 3 to 4 months for the steady state pitch angle
profile to be established.
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and 3 to 4 months for the steady state pitch angle profile
to be established, which is in agreement with the timescale
for the delay in the appearance of peak flux levels at
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sion coefficients calculated according to quasi-linear theory
in the high density approximation [Lyons, 1974a, 1974b]
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parameters of Horne et al. [2005a, 2005b] (See text for
model parameters). The solid curve shows the resulting
diffusion coefficients for 10 MeV electrons, while the
dashed curve shows 1 MeV values for comparison.

Figure 10. Equatorial pitch angle distribution of 10 MeV
electrons evolved using (10) over 200 days at increments of
10 days, starting from the dark blue curve. The flux takes
1 to 2 months to be discernable at the low equatorial pitch
angles observable by SAMPEX at !10 degrees (dashed
line) and 3 to 4 months for the steady state pitch angle
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During solar storm, outer belt electrons (adiabatically) accelerated in storm Eφ ⇒
I Peaked pitchangle distribution.

I Formation of new belt related to slow pitch-angle diffusion ∼ several months.

Particle tracing and acceleration in MHD evolution
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Transport modelling

Particle transport in diffusion limit described via Fokker-Planck type transport equation

∂f

∂t
+ v · ∇f =

∂

∂µ

(
Dµµ

∂f

∂µ

)
+

1

p2

∂

∂p

(
Dpp

∂f

∂p

)
(1)

with Pitch angle dependence µ = cosα.

Quasi linear theory (QLT) provides diffusion coefficients
Dµµ, Dpp in terms of the (turbulent) spectrum of magnetic
fluctuations (e.g. Jokipii, 1966).

Particle transport and acceleration in (turbulent) plasma key process in high energy
astrophysics!

Particle tracing and acceleration in MHD evolution
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QLT and its problems
I Given the spectrum of magnetic anomalies, P(k) ∝ k−q

I Assume guiding-centres are unperturbed

I Assume only resonant |s| = 1 wave-particle interactions

I Assume small amplitude broadband and incoherent waves (stochastic)

Dµµ =
ν(µ)

2
(1− µ2) (2)

λ|| =
3v

8

∫ 1

−1
dµ

(1− µ2)2

Dµµ(µ)
(3)

where ν = ν0|µ|q−1, kres = Ω/(Γpµv)

Singularity at µ = cosα = 0: Cannot
scatter through perpendicular point in
phase space!

The application of the Monte Carlo method in the propaga-
tion of charged particles in the heliosphere dates back to the
1970s (e.g., Jokipii & Levy 1977; Jokipii & Kopriva 1979).
The early applications treated the energetic charged particles
as random walkers in the configuration space in the spirit of
the Parker equation (Parker 1965). While the method continues
to be used to solve the cosmic-ray transport equation in the he-
liosphere (e.g., Gervasi et al. 1999; Bobik et al. 2012), the
method was applied to focused transport already in the early
1980s (Palmer & Jokipii 1981; Earl & Jokipii 1985). Modern
Monte Carlo models of focused transport are now routinely
applied to interplanetary transport and acceleration of SEPs
(e.g., Kocharov et al. 1998; Vainio 1998; Agueda et al. 2009;
Dröge et al. 2010; Wang et al. 2012).

The advantage of the Monte Carlo method is that it is very
flexible in terms of physical processes that can be included.
Processes like advection and adiabatic deceleration due to solar
wind expansion (Ruffolo 1995; Kocharov et al. 1998) and per-
pendicular diffusion (Dröge et al. 2010) are most easily treated
in Monte Carlo simulations, as typically their inclusion adds but
some tens of lines of code to the solver. The Monte Carlo model
has even been applied to full-orbit calculations resolving the gy-
romotion of SEPs in the large-scale magnetic field (e.g., Pei
et al. 2006; Sandroos & Vainio 2009).

The scattering operators in Monte Carlo solvers differ a lot
in their efficiency. In principle, general Itô calculus with low-
order methods, like the explicit Euler method, can be used,
but their efficiency is low since the time steps have to be kept
quite small to achieve accurate results on the form of the pitch-
angle distribution (e.g., Vainio 1998). Specialized methods,
based on exact or almost exact solutions of the pitch-angle dif-
fusion equation, can be orders of magnitude more efficient than
the general numerical methods. A well-known method (e.g.,
Torsti et al. 1996; Kocharov et al. 1998) exists for isotropic
scattering (i.e., m ¼ const:Þ, which is based on an analytical
solution of the diffusion equation on a spherical surface. How-
ever, as isotropic scattering is but a special case of pitch-angle
diffusion, a need for efficient but more general methods in deal-
ing with pitch-angle diffusion is evident.

For practical purposes, Agueda et al. (2008) proposed a scat-

tering frequency of the form mðlÞ ¼ m0
jlj

1þjljþ !
! "

, where ! is the

only parameter that regulates the shape of the pitch-angle diffu-
sion coefficient. Several simulation studies have assumed this
functional form (Agueda et al. 2008, 2009, 2010). This is numer-
ically very advantageous, as it reduces to the application of the

isotropic scattering method after a coordinate transformation.
However, so far the method has not been investigated in terms
of its potential to model scattering off magnetic fluctuations with
different types of power spectra. In particular, it is of interest to
investigate, whether the anisotropic scattering method, with a
proper choice of parameters, could actually approximate the
models based on QLT and its extensions. In the present work
we investigate under which circumstances the different func-
tional forms of the pitch-angle diffusion coefficients can lead to
equivalent results. In Section 2 we review the details of the scat-
tering models. In Section 3 we present the corresponding values
of q, H, and !. We summarize this work in Section 4.

2. Parametrization of the pitch-angle diffusion
coefficient

The focused transport equation governs the evolution of the
particle’s phase space density f (s, l, t) (Roelof 1969)

of
ot
þ lv

of
oz
þ 1% l2

2L
v
of
ol
% o

ol
DllðlÞ

of
ol

# $

¼ qðz; l; tÞ ð1Þ

Fig. 1. Pitch-angle diffusion coefficients for kk ¼ 0:1 AU; for H ¼ 0 and different slopes q of the power spectrum of the fluctuating magnetic
field (left) and different values of the e parameter (right).

Fig. 2. Corresponding values of e and q for the standard pitch-angle
diffusion coefficient (H = 0).

J. Space Weather Space Clim. 3 (2013) A10

A10-p2

(e.g. Agueda & Vainio, 2013)

Particle tracing and acceleration in MHD evolution
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Problems with QLT

One way out:

I Allow “resonance broadening” from δ(k − Ω/Γpµv) to more general but
parametrized Γ(k) (see also Dröge, 2000, 2003)

⇒ “Effective” resonant wavenumber
kres ∼ Ω√

(µΓpv)2+δ2V 2
A

Can fix the singularity, but there are more
problems...

I “Wrong” diffusive behaviour for
perpendicular transport (Shalchi
et al., 2004)

I “Geometry” problem for parallel
diffusion in non-slab modelswavenumbers. Equation (2) then transforms into

DllðlÞ ¼
1$ l2

2

!2

B2
0

!VAI5

%
Z 1

0

dx x1$q

ð!2V2
A þ l2v2Þx2 $ 2lv!=k5xþ !2=k25

:

ð5Þ

The integral in equation (5) can be performed by utilizing
complex integrals. Poles in the complex plane are located at

z1;2 ¼
!

k5

lv' i !VA

!2V 2
A þ l2v2

: ð6Þ

Evaluating the integral along the contour indicated in
Figure 2, we obtain

DllðlÞ ¼
"

sin ð2$ qÞ"½ )
1$ l2

2

!k5I5
B2
0

!=k5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2V 2

A þ l2v2
q

0

B@

1

CA

1$q

% sin ð1$ qÞ arctan !VA

lv

" #$ %
: ð7Þ

The form of the scattering coefficient (7) for protons of
1 MV rigidity and ! ¼ 1 is shown in Figure 3, together with
the corresponding contribution to DllðlÞ from fluctuations
with negative helicity, the sum of both components, and the
result of standard QLT. It is evident from the figure that as
a result of the resonance broadening effects particles are
scattered at all pitch angles, and in particular through
l ¼ 0, even if only one wave mode (or helicity) is present.

2.2. Including the Effects of the Dissipation Range

It turns out that equation (7) is a fairly good approxima-
tion for the ion mean free paths in the case that the reso-
nance broadening is sufficiently strong (! * 0:3 or larger).
However, for electrons with energies typical for solar events,
the dissipation range must not be neglected. The reason is
that electrons simply have less time, because of their higher
speed, to ‘‘ feel ’’ the decaying of the correlations and there-
fore interact with wavenumbers over a smaller range and
experience weaker scattering compared to ions of the same
rigidity. A representative power spectrum of magnetic field

fluctuations in the solar wind perpendicular to the average
field is shown in the top panel of Figure 4, observed on ISEE
3 in 1980 (magnetic field data courtesy of E. J. Smith and E.
W. Greenstadt). The spectrum was transformed from fre-
quency to wavenumber space taking into account the Dop-
pler effect due to the transport of the fluctuations with the
solar wind. In the inertial range extending from *10$6 to
*10$3 km$1 the spectrum exhibits a moderately steep power
law (exponents typically vary from $1.5 to $1.9), whereas
in the dissipation range, corresponding to frequencies above
1 Hz, it becomes quite steep. In this range spectral slopes
vary between $3 and $5 (cf. Leamon et al. 1998). The flat-
tening of the spectrum and the occurrence of spikes at the
highest wavenumbers are due to instrument effects.

To model the fluctuation spectra we employ a functional
form

IðkÞ ¼ I5
1þ ðk=kiÞm½ )$q=mk$q

5

1þ ðk=kdÞn½ )ðqd$qÞ=n ; ð8Þ

where qd is the spectral index in the dissipation range and kd
is the wavenumber where it sets in. The transition from the
inertial into the energy range of the fluctuations, where the
spectrum is assumed to be flat, is marked by ki, which is
equivalent to the inverse of the correlation length. The
sharpness of the transition from one power-law exponent to
another is modeled by the parameters m and n, respectively.
The normalization is such that IðkÞ represents the one-
sided spectrum of one perpendicular component of the
fluctuations, i.e., !B2

x ¼
R1
0 dk IðkÞ.

Implementing the dissipation range into an analytical cal-
culation of the scattering coefficient would require replacing
the power law in the integral in equation (5) by a double
power law. This would introduce at least two more poles in
the complex plane and require an additional cut line.
Although this is probably manageable, we have instead
applied a numerical technique for the integration of dissipa-
tion range spectra. For comparison with earlier work, we
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Fig. 3.—Pitch-angle diffusion coefficient in the case of resonance
broadening for protons of 1 MV rigidity and ! ¼ 1 for positive (solid line)
and negative (dash-dotted line) helicity. Also shown are the sum of both
components (dashed line) and the results of standard QLT (dotted line).
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Examples from recent literature

Beyond QLT
I Non-linear guiding centre theory (NLGC), Matthaeus et al. (2003): Solves 90◦

problem and perpendicular transport

I Weakly non-linear theory (WNLT)

I Second order QLT, Shalchi (2005): Correct orbits with result from QLT and
re-substitute

Uses assumptions on higher-order correlations, theory becomes increasingly
intractable...

110 5 The Weakly Nonlinear Theory

Fig. 5.2 The nonlinear Fokker–Planck coefficient of perpendicular diffusion for composite geom-
etry (solid line) and for pure 2D (dotted line) in comparison with the QLT slab result (dash-dotted
line). For this plot, R D RL=lslab D 0:1 and lslab D l2D D 0:03 AU have been used
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Fig. 5.3 The parallel mean free path: WNLT results (solid line) in comparison with QLT results
(dashed line) and simulations (Qin 2002, dots). All results are for 20% slab/80% 2D geometry.
Also shown are the well-known QLT results for pure slab geometry (dotted line)

5.4 Results of WNLT for the Parallel and the Perpendicular Mean Free Path 111
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Fig. 5.4 The perpendicular mean free path: WNLT results (solid line) in comparison with NLGC
results for a2 D 1 (dotted line) and a2 D 1=3 (dashed line), and simulations (Qin 2002, dots). All
results are for 20% slab/80% 2D geometry

100

10–1

10–2

10–2 10–1 100 10110–3

R = RL/lslab

λ ⊥
/λ

||

Fig. 5.5 The ratio !?=!k: WNLT results (solid line) in comparison with NLGC results a2 D 1
(dotted line) and a2 D 1=3 (dashed line), and simulations (Qin 2002, dots). All results are for 20%
slab/80% 2D geometry

(see Fig. 5.3). The NLGC theory contains a fitting parameter a. We compare our
results with NLGC results for two different values of a: the value a D 1 (dotted
line) should be correct in the weak turbulence limit, whereas the value a D 1=

p
3

(dashed line) provides the best agreement with simulations. For completeness, also
the ratio !?=!k is shown (Fig. 5.5). The results shown are quite similar to the NLGC
theory results if the parameter a is assumed to be a2 D 1=3.

Parallel and perpendicular MFP in WNLT (solid), QLT (dashed), slab-QLT (dotted) and

test-particle simulations (dots). Plotted against Larmor radius in units of correlation length.

For more, see the book “Nonlinear Cosmic Ray Diffusion” by Shalchi (2009).
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Examples from recent literature

Test particle transport simulations

I MHD simulation of e.g. driven turbulence

I “Push” particles, given the Lorentz force

du

dt
=

q

mc

(
E +

u× B

cΓp

)
+ g (4)

can include radiation-reaction force g. E,B are the MHD electric and magnetic fields.
Measure diffusion coefficients from particle positions:

Dµµ = lim
t→∞

1

2

〈(∆µ)2〉
t

; Dpp = lim
t→∞

1

2

〈(∆p)2〉
t

(5)

Alternatively, use Taylor-Green-Kubo formulation

Dµµ =

∫ ∞
0

dt〈µ̇(t)µ̇(0)〉 ; Dij =

∫ ∞
0

dt〈ṽ(t)ṽ(0)〉 , i = x , y (6)

Coefficients given by two-time correlations, e.g. µ̇, or guiding-centre velocity ṽ

Particle tracing and acceleration in MHD evolution
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Examples from recent literature

Test particle transport simulations
For example Wisniewski et al. (2012) and Spanier & Wisniewski (2011).F. Spanier and M. Wisniewski: Charged Particle Diffusion 23
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Fig. 4. Acceleration of particles in wave-particle-interaction. In this
setup we expect a gyroresonance at 70� and 79�. This can be clearly
detected here.

3.1 Analytical test case

The most simple test cases which have been conducted are
the convection and gyration of energetic particles in uniform
magnetic field or in the absence of magnetic fields. This has
been performed to check the limit of stability and it could be
shown that with the given algorithm the analytical behaviour
could be reproduced.
For all test cases a box size of 1017 cm has been used. This

is motivated by length scales inferred from the interstellar
medium. The box is cubic not preferring 2D or slab-like tur-
bulence. We refrained from using box anisotropies as used
in Maron and Goldreich (2001), since those might affect the
transport parameters strongly.

3.2 Gyroresonance test case

A more sophisticated test case is the interaction of an ener-
getic particle with one single wave. While there is no full
analytical solution for this problem, we can still look for res-
onances in the change of momentum. In Fig. 4 one Alfvén
wave has been assumed and a population of energetic parti-
cles with identical momentum and isotropic distribution with
respect to the background magnetic field. Using the reso-
nance condition

kkvµ�! = n�i n = ...�1,0,1,... (5)

In the specific test case one expects that gyroresonances
would be expected for the particle propagation angles 70�

and 79�, which is clearly detected. So the code is able to
cope this important test case.

3.3 Fundamental wave test case

For the first test case energy (with compressible or incom-
pressible modes) has been injected only on the largest scale
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Fig. 5. Spectrum for driving with k=1, squares denote the driving
spectrum, stars undriven modes

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0.0001  0.001

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

(n
T

)2  k
m

)

wavenumber (1/km)

Fig. 6. Spectrum for driving with k=1 and k=2, squares denote the
driving spectrum, stars undriven modes

(k=1, which can be represented as a delta-function for the
external force F in Fourier space) and has been evolving.
The spectrum can be seen in Fig. 5. Energetic particles are
put into the simulation isotropically and uniformly. The test
case has been performed with two different super-Alfvénic,
subrelativistic particle species (105 and 7·105 m s�1).

3.4 Higher order wave test case

For the second test case energy has been injected on the two
largest scales (k=1 and 2) and has been evolving. The spec-
trum can be seen in Fig. 6. The rest of the setup is similar to
the first test case.

www.astrophys-space-sci-trans.net/7/21/2011/ Astrophys. Space Sci. Trans., 7, 21–27, 2011
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Fig. 11. Pitch angle diffusion coefficient for slow particles, incom-
pressible driving, driving k=1
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Fig. 12. Pitch angle diffusion coefficient for fast particles, incom-
pressible driving, driving k=1

the system (i.e. test case 2) also there the peak is broadened.
For the fast particles not only the amplitude of the central
peak is decreased in the fundamental wave case, but also the
gyroresonance is almost vanished. This may be explained
by the fact that the fast particles resonate closely to k=2.
Additionally the resonance broadening, which is present in
our thermal plasma, is less pronounced for faster particles.

4.3 Momentum diffusion

Additionally for higher order wave case the momentum dif-
fusion coefficientDpp has been calculated. Again compress-
ible or incompressible modes have been used for driving for
slow and fast particles. Results are shown in Figs. 13 – 16.
The comparison of momentum diffusion coefficients

proves the result from the pitch angle diffusion coefficient:
Slow particles show a strong scattering at µ=0, which is ap-
proximately the same for compressible and incompressible
driving. The fast particles show gyroresonances which are
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Fig. 13. Momentum diffusion coefficient for slow particles, com-
pressible driving, driving k = 1 and 2
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Fig. 14. Momentum diffusion coefficient for fast particles, com-
pressible driving, driving k = 1 and 2

more pronounced in the incompressible driving case. The
overall scattering is also stronger for fast particles, where the
increase is in approximately given by Shalchi and Schlick-
eiser (2004, Eq. 85) for particle energies well below the rest
energy.

5 Conclusions

We have shown simulations of the transport of charged parti-
cles in MHD plasmas without any assumptions on the under-
lying physics. Simple test cases have proven that our code is
able to track particles, while extended test cases could give
insight into wave-particle interaction in more complex situa-
tions. It should be however noted that this is not yet a fully
evolved turbulent spectrum.
The main advantage of this method over previously used

methods (Qin et al., 2006; Giacalone and Jokipii, 1999;
Michałek and Ostrowsky, 1996; Tautz, 2010) is of course the

www.astrophys-space-sci-trans.net/7/21/2011/ Astrophys. Space Sci. Trans., 7, 21–27, 2011

Use test-particle simulations to

I Check assumptions on non QLT theories

I Evaluate importance of non-resonant effects

I Include effect of δE , strong turbulence δB/B > 1

I Obtain “empirical” diffusion coefficients
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Particle transport in Pulsar Wind Nebulae, Porth et al. (2013, 2014)

IR

Optical

X-ray

Thermal filaments

33 ms Pulsar

Diffuse polarized 
continuum emission, 
ionizing the filaments

Filament mass: ~4Msun

too low for core-collapse 
supernova.  Most of 
ejecta invisible!

!"#$%&#"'!! ()**++,#-.*/),01)23+ 4

Introduction

• 1054 AD Supernova at 2 kpc
• Consists of a pulsar, pulsar wind nebula, and a cloud of
expanding ejecta
• Energy spectrum: synchrotron & inverse Compton
components

Distance ~2 Kpc
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Particle transport in Pulsar Wind Nebulae

Rees & Gunn (1974), Kennel & Coroniti (1984)

1D Model

• electrons are accelerated at the termination shock to relativistic energies according 
to n∝E-2.2 

• loose energy due to synchrotron and inverse Compton emission.  => Successful to 
model spectrum from visible to γ-rays 

• particle dominated relativistic 
pulsar wind with purely azimuthal 
magnetic field terminates at 
shock

• sub-sonic nebula flow velocity 
decreases to match speed of 
remnant

• magnetic field increases towards 
the outer boundary of the nebula

~v

~B

Supernova remnant

Blast wave

Contact discontinuity

Pulsar wind nebula bubble

Termination shock

Relativistic Pulsar Wind
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Covariant form of the equations

We can postulate the ideal MHD equations by demanding

Mass conservation

∇µJµ = 0 (7)

Energy and momentum
conservation

∇µTµν = 0 (8)

Maxwell’s equations and ideal
MHD

∇∗µFµν = 0, Fµνuν = 0 (9)

Equation of state

ε = ε(p, ρ) (10)

∇µ are covariant derivatives. These equations are valid in any frame (GR). For the
PWN-application, we use Minkowski ηµν .

Particle tracing and acceleration in MHD evolution
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Particle transport in Pulsar Wind Nebulae

Particle tracing and acceleration in MHD evolution
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Particle transport in Pulsar Wind Nebulae

Particle tracing and acceleration in MHD evolution



Motivation Applications Guiding Centre Approximation The examples of the Hands-On-Session References

Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Particle transport in Pulsar Wind Nebulae

B(Gauss)   

The magnetic field is strongest in the vicinity of the termination shock (in contrast to 
classical models), where it is still predominantly azimuthal. It is disordered further away 

from the shock. 

Magnetic field in the nebula

Particle tracing and acceleration in MHD evolution
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Particle transport in Pulsar Wind Nebulae, Work in progress with
Michael Vorster, Eugene Engelbrecht and Maxim Lyutikov

X-ray emitting leptons have Lorentz factors of Γp ≥ 107

du

dt
=

q

mc

(
E +

u× B

cΓp

)
(11)

Drr (t) =
1

2

〈(∆r(t))2〉r,φ,θ
t

(12)

Particle orbits in a 2D evolution and running diffusion coefficient for radial transportParticle tracing and acceleration in MHD evolution
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Particle transport in Pulsar Wind Nebulae
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Average profile of the radial diffusion coefficient

for increasing particle energies.

Bohm Diffusion:

DB =
1

3
r2
gωg (13)

= 1.7× 1026

(
Γp

109

)(
B

100µG

)−1

cm
2
s
−1

(14)

Turbulent Eddy diffusion:

DE
Ls =

1

3
vf Ls (15)

= 2.1× 1027
( vf

0.5c

)( Ls

0.42Ly

)
cm

2
s
−1

.

(16)

Ls : Scale of largest Eddy, termination shock ∼ 2× 1017 cm. vf : Velocity at this scale
∼ 1/2c.

rg =
p⊥c
eB

= 1.7× 1016

(
Γp

109

)(
B

100µG

)−1

cm (17)

Diffusion becomes energy dependent when rg ≥ Ls , thus for Γp = 1010, these particles
have too short synchrotron lifetimes however ⇒ Diffusion always energy independent!

Particle tracing and acceleration in MHD evolution
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Particle transport in Pulsar Wind Nebulae
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Particle transport in Pulsar Wind Nebulae
Back to the transport equation:

∂f

∂t
+ v · ∇f =

∂

∂µ

(
Dµµ

∂f

∂µ

)
+

1

p2

∂

∂p

(
Dpp

∂f

∂p

)
(18)

Look for steady state solutions for the radial transport and including adiabatic and
radiative losses:

Drr (r)
∂2f

∂r2
+

[
1

r2

∂

∂r

(
r2Drr (r)

)
− V (r)

]
∂f

∂r
+

[
1

3r2

∂

∂r

(
r2V (r)

)
+ zpp

]
∂f

∂ ln p
+4zppf = 0,

(19)
with the Synchrotron loss term

zp(r) =
4σT

3 (mec)2

B2(r)

8π
(20)
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Particle transport in Pulsar Wind Nebulae: Vela

Particle tracing and acceleration in MHD evolution
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Particle transport in Pulsar Wind Nebulae: G21.5-0.9

Particle tracing and acceleration in MHD evolution
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Particle transport in Pulsar Wind Nebulae: 3C58

8 O. Porth, M. J. Vorster and M. Lyutikov

Figure 7. Averaged profiles of magnetic field magnitude and radial velocity in model B3D of PKK14. A Gaussian was fitted to profiles

averaged from four snapshots at t = 60, 61, 62, 63 years after the start of the simulation.

Table 1. Values derived for the free parameters. KC84 represent values found using the magnetic field derived by Kennel & Coroniti

(1984a), and PKK14 the values found using the model of Porth et al. (2014a).The second part of the table lists spatially averaged values
calculated from the modelling.

G21.5-0.9 Vela 3C 58

Parameter KC84 PKK14 KC84 PKK14 KC84 PKK14

B0 (µG) 11 283 24 38 2.2 300
V0 (units of c) 0.36 0.51 0.43 0.51 0.35 0.51

0 (1026 cm2 s�1) 55 5.7 1.6 1.4 12.1 13.3

� (10�3) 1.3 �� 55 �� 0.55 ��
⌘ (10�2) 3.0 4.5 2.6 2.1 �� ��
B̄ (µG) 51 43 5.2 5.8 17 46

V̄ (10�3, units of c) 4.2 3.1 68 3.3 4.5 2.6
̄ (1026 cm2 s�1) 11.5 5.7 8.1 1.4 1.7 13.3

⇠̄ 0.21 0.34 7.3 2.1 2.2 0.19

nebula with a radius of rpwn ⇠ 4000, while Slane et al. (2000)
estimated a value of r0 & 1”.5 for the radius of the termina-
tion shock. In order to keep the number of free parameters
to a minimum, the value r0 = 1”.5 is used for fitting the
data.

Bietenholz & Bartel (2008) measured that the PWN is
expanding at a velocity of Vpwn = 910 ± 160 km s�1. With
the assumed value of r0, the KC84 model predicts that the
above-mentioned expansion velocity in the outer regions of
the PWN is compatible with the range of values 1.0⇥10�3 
�  1.6 ⇥ 10�3. For the modelling the intermediate value
� = 1.3 ⇥ 10�3 is chosen. This range of � values is also
comparable to the value � = 3 ⇥ 10�3 derived for the Crab
Nebula (Kennel & Coroniti 1984b). For the PKK14 model,
the value Vpwn = 910 km s�1 is used.

The data that is modelled is the 2� 8 keV observations
given in Tsujimoto et al. (2011). For these observations data
was extracted from circular regions of increasing size, with
the centre of each region placed on the position of the pul-
sar. The observations therefore represent cumulative data.
A 3 � 45 keV observation for the region r  3000 has also
recently been reported by Nynka et al. (2014). The authors
found statistically significant evidence for a spectral break
at ⇠ 9 keV, deriving � = 1.852 ± 0.0011 for the 3 � 9 keV
energy range, and � = 2.099+0.019

�0.017 for the 9� 45keV energy
range. However, the 3�9 keV measurement is not entirely in

agreement with the results of Tsujimoto et al. (2011), who
found � = 1.78 ± 0.02 for the same region. Despite this dis-
crepancy, the single 9 � 45keV observation of Nynka et al.
(2014) was taken into account for the modelling, as it was
found that this does help to constrain the possible free pa-
rameters. As such the single observation should have only a
limited influence on the �2 value calculated for the fit.

The best-fit model prediction using the KC84 model is
shown in Figure 8, with the best-fit values listed in Table 1.
The figure shows that the KC84 model is able to produce a
good fit to the data in the intermediate and outer regions
of the PWN, but fails to reproduce the data in the inner
regions. The average magnetic field derived from the fit is
B̄ = 51 µG, comparable to the value B̄ = 25 µG derived
by de Jager et al. (2008) using very high energy gamma-
ray observations. This is also comparable to the values B̄ =
47 µG and B̄ = 64 µG derived by Tanaka & Takahara (2011)
using a spatially independent transport model. However, the
value for presently derived for the B̄ is significantly smaller
than the equipartition value B = 180 µG estimated by Safi-
Harb et al. (2001), and used by Tang & Chevalier (2012)
in their modelling of G21.5-0.9. Using the present model it
was found that such a large magnetic field can also lead to
a fit similar to the one shown in Figure 8, provided that one
neglects the 9 � 45keV observation of Nynka et al. (2014).
One possible problem with the fit shown in Figure 8 is that

c� 0000 RAS, MNRAS 000, 000–000

I Quality of fits based on re-scaled
simulation models “as good/bad as”
the laminar flow models

I Constrained parameters agree in
order-of-magnitude with simpler
analytic model

I Péclet number ξ = Vr
Drr

= O(1) thus

diffusion important transport
mechanism!
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Particle transport in Pulsar Wind Nebulae: MPI-AMRVAC simulations

Model diffusive shock acceleration using SDE
Investigate diffusive shock acceleration
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part, calculated assuming power-law spectra of index � (as in
Kolmogorov or Kraichnan theories). The authors present, us-
ing averaged spatial displacements over time intervals, the be-
havior of the spatial di↵usion coe�cients as a function of the
particles energies as well as turbulence level ⌘T. The di↵usion
coe�cient along the mean magnetic field displays energetic de-
pendence similar to the quasi-linear theory but on any turbu-
lence level. On the other hand, the di↵usion coe�cient trans-
verse to the mean magnetic field is clearly in disagreement with
the neo-classical prediction (see Eq. (2)). The chaotic trans-
verse di↵usion regime is occurring when the turbulence level
is large but can probably be extended to lower turbulent levels,
as first imagined by Rechester & Rosenbluth (1978). In Casse
et al. (2002) this regime was observed for all turbulence levels
down to ⌘T = 0.03. The resulting transverse coe�cient is re-
duced to D? / Dk with a proportionality factor only depending
on the turbulence level, namely

Dk / c�max
⌘T
⇢̃2��,

D? / ⌘1.3T c�max ⇢̃2��. (3)

In this paper we will use the above prescription as, unless very
low ⌘T, the chaotic di↵usion always dominates.

2.2. Acceleration processes
In a di↵usive shock2 particles able to resonate with wave turbu-
lence, undertake a pitch-angle scattering back and forth across
the shock front gaining energy. The finite extension of the dif-
fusive zone implies some escapes in the downstream flow. The
stationary solution for a non-relativistic shock can be writ-
ten as f (p) / p�(3+⌧acc/⌧esc). In a strong shock the accelera-
tion timescale ⌧acc exactly balances the particle escape time
scale ⌧esc (Drury 1983). The acceleration timescale, for a par-
allel shock is ⌧accDSA = 3/(r � 1) tr, where r = uu/ud is the
shock compression ratio (uu and ud are respectively upstream
and downstream velocities of the fluid in the shock frame) and
tr = (c/ud)2⌧s is the downstream particle residence time.

The MHD turbulence, especially the Alfvèn turbulence,
mainly provokes a di↵usion of the particle pitch-angle. But the
weak electric field of the waves �E/�B ⌘ Va/c also accelerates
particles. The momentum di↵usion is of second order in terms
of the Fokker-Planck description and the acceleration timescale
is ⌧accFII = (c/Va)2 ⌧s. Note that even if the stochastic accelera-
tion is a second order process, ⌧accFII may be of the same order
as ⌧accSDA in low (sub-Alfvenic) velocity flows or high Alfvèn
speed media as remarked by Henri et al. (1999).

In radio jets (see Ferrari 1985, 1998, for reviews of
jet properties) one can expect typical magnetic fields B ⇠
10�5/�4 Gauss, thermal proton density np ⇠ 10�2/�5 cm�3 and
thus Alfvèn speeds Va/c between 7 ⇥ 10�4�0.2. In light and
magnetized jets, the second order Fermi process can be faster
than di↵usive shock acceleration. We decided to postpone the
2 The shock drift acceleration mechanism has been applied to

electron acceleration in extragalactic radio sources by Anastiadis &
Vlahos (1993) and references therein. This e↵ect will not be consid-
ered in the simulations and is not further discussed.

investigation of second order Fermi acceleration in jets to a
future work. In this first step, we mostly aim to disentangle
the di↵usive shock acceleration process, the turbulent spatial
transport and radiative losses e↵ects shaping the particle dis-
tribution. We will therefore only consider super-Alfvenic flows
hereafter.

3. Numerical framework
In this section, we present the multidimensional stochas-
tic di↵erential equations system equivalent to the di↵usion-
convection equation of RPs3.

3.1. Stochastic differential equations
The SDEs are an equivalent formulation of the Fokker-Planck
equations describing the evolution of the distribution function
of a particle population. It has been shown by Itô (1951) that
the distribution function f obeying Fokker-Planck equation as
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at a point X of phase space of dimension N, can also be de-
scribed as a set of SDEs of the form (Krülls & Achterberg
1994)

dXt,i
dt
= Ai(t, Xt) +

NX

j=1
Bi j(t, Xt)

dWt, j

dt
,

i = 1, ..,N (5)

where the Wt, j are Wiener processes satisfying hWi = Wo and
h(W �Wo)2i = t � to (Wo is the value ofW at to). The di↵usion
process described by Fokker-Planck equations can be similarly
taken into account if dWi/dt = ⇠i is a random variable with a
Gaussian conditional probability such as

p(t, ⇠|to, ⇠o) = 1p
2⇡(t � to)

exp
 
� (⇠ � ⇠o)

2

2(t � to)
!
· (6)

The Fokker-Planck equation governing this population will be
(Skilling 1975)
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!
, (7)

where Di j is the spatial di↵usion tensor and Dpp describes en-
ergy di↵usion in momentum space. The term asyn stands for
synchrotron losses of the electrons. Its expression is

asyn =
�TB2

6⇡m2ec2
, (8)

3 van der Swaluw & Achterberg (2001) have investigated the cou-
pling between 2D Hydrodynamical code and SDEs adapted to the non-
thermal X-ray emission from supernova remnants.
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Table 1. Computations of confinement time Tcf for di↵erent di↵usion
coe�cient values and theoretical value of this confinement time. Note
that the agreement is good as far as the confinement time is large.
Indeed, the time step �t = 5 ⇥ 10�3 to compute them is the same for
the three runs which leads to di↵erent ratio Tcf/�t. If this ratio is too
small, the time step is not appropriate to accurately model the particle
transport.

DRR R2jet/4DRR Tcf
0.0125 20 19.96
0.025 10 9.94
0.075 10/3 3.25
0.15 5/3 1.47

where Rjet is the jet radius and the di↵usion coe�cients DXX
and DYY can be related to DRR by

DRR =
h�R2i
2�t

=

*
(X�X + Y�Y)2

R2

+
1
2�t

= DXX = DYY . (21)

In this relation, X and Y are two uncorrelated variables
(h�X�Yi = 0). It is then easy to see that the confinement time
of a set of particles inside a jet is

Tcf =
R2jet
4DRR

(22)

when one consider an infinitely long jet (no particle escape in
the Z direction). We have performed a series of calculations
dealing with one million particles injected near the jet axis with
di↵erent values of the radial di↵usion coe�cient. We have set
a time step of �t = 5 ⇥ 10�3 and integrated the particles tra-
jectories using the numerical scheme Eq. (15). When a particle
has reached the jet surface (R = Rjet), we stop the integration
and note its confinement time. Once all particles have reached
the jet surface, we calculate the average value of the confine-
ment time. In Table 1, we present the result of the di↵erent
computations. The good agreement between the numerical and
the estimated confinement times is a clue indicating that the
spatial transport of the particles in the jet is well treated as far
as the time step is small enough to mimic the Brownian mo-
tion of particles. Another way to test SDEs in this problem is
to look at the distribution function of these particles since the
analytical solution to the di↵usion with uniform coe�cients is
known. The Fokker-Planck equation, in the case of a uniform
spatial di↵usion without any energetic gains or losses, is
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The radial dependence of f arising from this equation is, for an
initial set of particles located at the jet axis,

f (R, Z, t) / 1
4DRRt

exp
 
� R2

4DRRt

!
· (24)

In Fig. 1 we plot the distribution function F = R f obtained
for a set of 5 ⇥ 105 particles located initially very close to
the jet axis. The plot is done at a given time t = 2 and with

Fig. 1. Plot of the distribution function F = R f modelized by SDE in
the case of a uniform spatial di↵usion, for a fixed Z versus the radial
coordinate in jet radius unit. The solid curve is the analytical solu-
tion obtained from Fokker-Planck equation Eq. (7) which is in good
agreement with computations using SDEs.

DRR = D? = 0.1. The symbols represent the numerical values
obtained using SDEs while the solid line represents the analyt-
ical solution from Eq. (24). The good agreement between the
two curves is a direct confirmation that the transport of particles
is well modelized by SDEs.

4.2. MHD simulations of extragalactic jets

In order to describe the evolution of the jet structure, we have
employed the Versatile Advection Code (VAC, see Tóth 1996
and http://www.phys.uu.nl/⇠toth). We solve the set of
MHD equations under the assumption of a cylindrical symme-
try. The initial conditions described above are time advanced
using the conservative, second order accurate Total Variation
Diminishing Lax-Friedrich scheme (Tóth & Odstrčil 1996)
with minmod limiting applied on the primitive variables. We
use a dimensionally unsplit, explicit predictor-corrector time
marching. We force the divergence of the magnetic field to be
zero by applying a projection scheme prior to each time step
(Brackbill & Barnes 1980).

4.2.1. MHD equations

We assume the jet to be described by ideal MHD in an ax-
isymmetric framework. This assumption of no resistivity ⌫m
has consequences on the particle acceleration since the Ohm
law states the electric field as E = �u ⇥ B. This electric field
will vanish in the fluid rest frame so that no first-order Fermi
acceleration can be achieved by E. In the case of a resistive
plasma, the electric field (E = B ⇥ u + ⌫mJ , J density cur-
rent) cannot vanish by a frame transformation and a first-order
Fermi acceleration will occur. In order to capture the dynam-
ics of shocks, the VAC code has been designed to solve MHD
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done accurately. We adopt the following procedure to calculate
it: shocks are characterized by very negative divergence so at
each cells (i, j) we look for the most negative result from three
methods

r · u(i, j) = min
 
⌥uZ(i, j) � uZ(i, j ± 1)|Z( j) � Z( j ± 1)| ,

uZ(i, j + 1) � uZ(i, j � 1)
Z( j + 1) � Z( j � 1)

!

+min
 
⌥R(i)uR(i, j) � R(i ± 1)uR(i ± 1, j)

R(i)(R(i) � R(i ± 1)) ,

R(i + 1)uR(i + 1, j) � R(i � 1)uR(i � 1, j)
R(i)(R(i + 1) � R(i � 1, j))

!
· (36)

This approach ensures that the sharp velocity variation occur-
ring within a shock is well described and that no artificial
smoothing is created in the extrapolation of flow velocity diver-
gence. At last, note that the location of the most negative r · u
corresponds to the shock location. The measurement of spectra
at shock front will then be done by looking at particles charac-
teristics passing through this location.

4.3. Realistic plane shock
In this subsection we address the issue of the production of en-
ergetic spectra by plane shocks arising fromMHD simulations.
This issue is a crucial test for the relevance of SDEs using the
velocity divergence defined in Eq. (36). We stress that all sim-
ulations performed in this paper are done using test-particle
approximation, i.e. no retroactive e↵ects of the accelerated par-
ticles on the flow are taken into account.

4.3.1. Strong shock energetic spectrum
We have performed a series of MHD simulations of cylindri-
cal jets subject to Kelvin-Helmholtz instabilities (cf. Sect. 4.2).
We selected the case of a plane shock (quite common in the
KH instability simulations) propagating along the jet with a ra-
dial extension up to the jet radius (see Fig. 3). Its compres-
sion ratio is r = 4 (measured by density contrast) and constant
along the shock front. We have chosen a particular snapshot of
the structure displayed in Fig. 3. By rescaling the vertical ve-
locity in order to be in the shock frame (where the down and
up-stream velocities are linked by udown = uup/r), we first con-
sider this shock with infinite vertical boundaries and reflective
radial boundaries. Namely, we set that if the particle is escap-
ing the domain at Z < Zmin = 0 or Z > Zmax = 8, we take
the velocity to be up(Z > Zmax) = up(R, Zmax) (same thing for
Z < Zmin). The condition allows for particles far from the shock
to eventually return and participate to the shaping of F(p). The
reflective radial boundaries are located at the jet axis R = 0
(to avoid the particle to reach R = 0 where SDEs are not valid)
and R = 1. Such boundaries ensure that no particle can radi-
ally escape from the jet during the computation. The constant
value of the di↵usion coe�cients DZZ and DRR must fulfill re-
lations (17) and (19). Actually, in the particular case of a plane
shock propagating along the vertical axis, only DZZ must ful-
fill previous relations, namely DZZ > Dmin = Xsh|uZ |/2. The

Fig. 3. Zoom in a jet snapshot where Kelvin-Helmholtz instabilities
are active. The parameters of the MHD simulations are the same as in
Fig. 2. The grey levels represent the density levels while the white
lines are magnetic surfaces. A shock arises in the core of the jet
(R  1) with a plane shape perpendicular to the jet axis. Using a
large number of particles like the one which trajectory is displayed
with a thick white line, we measure, in the shock frame, the stationary
energetic spectrum of particles at the shock front.

shocks width Xsh is defined as the location of the most nega-
tive velocity divergence of the flow. Typically, this width corre-
sponds to the size of a mesh cell in the case of strong shock.We
can then safely set DZZ = 0.4 as we will have DZZ = 10Dmin.
The radial di↵usion coe�cient is tuned as DRR = 0.01 and will
enable particle to explore the shock front structure. In Fig. 4
we display the results of the use of SDEs on a particle popula-
tion injected at momentum p = po and propagating in snapshot
represented by Fig. 3. We easily see that the resulting spec-
trum is a power-law of index �4 completely in agreement with
DSA theory (see Sect. 2). The existence of a few particle with
p < po arises from the fact that outside the shock, the velocity
divergence is not equal to zero, as it would be with a prescribed
velocity profile (Krülls & Achterberg 1994; Marcowith & Kirk
1999). Note that in the absence of other energetic mechanism
(as second-order Fermi acceleration or synchrotron losses), the
simulation is independent of the physical value of po as the
di↵usion coe�cient is independent of p.

4.3.2. Single shock with synchrotron losses
For electrons, the acceleration occurring within shock may be
balanced at the cut-o↵ by radiative losses due to the presence of
the jet magnetic field. Webb et al. (1984) has presented a com-
plete analytical resolution of Fokker-Planck transport equation

Casse & Marcowith (2003) Marcowith & Casse (2010)

Particle tracing and acceleration in MHD evolution
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The guiding centre approximation
I Direct Lorentz integration pointless when RL ≡ p⊥c

qB
� L, with L being a typical

scale of the MHD evolution.

I Decompose particle orbit

r = R + ρ (21)
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whose center is moving along a line of force. If the field is not quite uniform and 
not quite time-independent, we expect that the motion will not be quite helical; 
we also expect that something approximating helical motion will still be dis- 
cernible, and therefore that a good approximation will contain gyration about a 
center that now may move at right angles to the line of force as well as along it. 
This expectation is indeed correct, and the equations governing this 'guiding- 
center' motion can be derived by following physical intuition. To do this let 
r - R q- 0, where the vectors are defined in Figure 1. To correspond to the picture 
of rapid gyration about the guiding center, let 0 - p(•2 sin cot q- •3 cos cot), where co 
is the angular frequency of gyration eB(R)/mc, B(R) is the magnetic field at R, 
and •.(R) and •3(R) are unit vectors perpendicular to B(R) and to each other. If 
R q- • is now substituted into the equation of motion for the particle 

m• = (el/c) X B(r) q-eE(r) 

and an average is taken over a period of the gyration. The result, after a little 
algebra with the unit vectors, is [Hellwig, 1955; Northrop, 1961] 

e [ it X B(R)I M VB(R) q- terms proportional to m (2) • = • E(R) q- c m e 
Here M is the well-known magnetic moment ep2co/2c = mvx2/2B, where Vx is the 
particle velocity perpendicular to B(R). In (2) only terms through zero order in 
m/e have been kept; m/e can be used as the expansion parameter because, if (1) 
is written in suitable dimensionless form, the dimensionless parameter that appears 
is the gyration radius divided by the dimensions of the system, and m/e is pro- 
portional to this ratio. 

The component of 1• perpendicular to B(R) in (2) is the guiding-center ve- 
locity perpendicular to B(R). It is the so-called 'drift velocity' and is obtained by 
taking the vector product of (2) with B. We have 

Guiding 
center 

--- Particle 
R -.. position 

r 

B 

Origin 
Fig. 1. The charged particle gyrates about its guiding center. 

See textbook of Northrop (1963).

I Average over gyro-phase and derive equation
of motion for the guiding centre R

I Decompose R into direction along the field
line and across (drift)

I Decompose momenta into parallel p|| and
perpendicular p⊥ components,
p2
⊥/(2mB) = M = const.

M = AI (22)

A = πR2
L ; I =

qΓpv⊥/c
2πRL

; RL =
p⊥c
qB
⇒ M = πR2

L

qΓpv⊥
2πRL

=
p2
⊥

2mB
(23)
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The guiding centre approximation, E||,E⊥ = O(ε)

dR⊥
dt

=
E× B

B2
+

b̂

B
× p2

⊥c

2BΓpqm
∇|B|+ b̂

B
×

p2
||c

Γpqm
(b̂ · ∇)b̂ (24)

I “EcrossB” drift1

I “GradB” drift

I “Curvature” drift

1Sketches courtesy of I.H.Hutchinson http://silas.psfc.mit.edu/introplasma/Particle tracing and acceleration in MHD evolution
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GC position:

dR

dt
=

dR⊥
dt

+
p||

Γpm
b̂ (25)

Parallel momentum:

p||
dt

= qE||−
M

Γp
(b̂ · ∇)|B| (26)

I Direct acceleration

I “Mirror force”

Perpendicular momentum:

p2
⊥

2Bm
≡ M = const. (27)

Particle tracing and acceleration in MHD evolution
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Applicability of the GCA, solar corona

Parameters for magnetic field magnitude B, temperature T , number density n, thermal speed

vthermal =
√

2kBT/m0, plasma beta β = 2µnkBT/B
2, gyration radius RL = γv⊥m0/qB and

Lorentz factor γ respectively, for electrons and protons in the solar corona (Goedbloed & Poedts,

2004).

Typical values for plasma parameters in the solar corona

Particle B [T ] T [K ] n [m−3] vthermal [m/s] β [−] RL [m] γ [−]

Electron 0.03 T 106 K 1016 m−3 5.5× 107 ms−1 0.0004 10−3 m 1.0002

Proton 0.03 T 106 K 1016 m−3 1.3× 106 ms−1 0.0004 4.4× 10−2 m 1.0000

Typical simulation O(106m), resolution ∼ 3003: The orbiting motion takes place on
approximately 10−8 of a grid cell (electrons) and on 5× 10−7 of a grid cell (protons).

⇒ Gyrations completely unresolved! GCA well applicable.

Particle tracing and acceleration in MHD evolution
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Solar corona, example: Gordovskyy et al. (2014)
A&A 561, A72 (2014)

Time = 640

Time = 960

Time = 1312

Time = 1600

Fig. 5. Selected magnetic field lines (left panels) and current density
iso-surfaces ( j = 0.5) (right panels) during magnetic reconnection in
the Model A (low-density case). Different colours are used for magnetic
field lines to demonstrate the change of connectivity. Blue lines origi-
nate almost at the centre of the footpoint at y ≈ 6.4; red lines originate
almost at the centre of the footpoint (y ≈ −6.4); other lines belonging
to the twisted fluxtube are shown in green. The corresponding times are
shown at the lower left corners.

implementation in more details. In collisional terms, we ignore
the relativistic factor γ, since particles with a value of γ notice-
ably greater than 1 are not significantly affected by Coulomb
collisions. The average collisional energy loss of a particle with

mass m moving with speed v # vth =
√

kBT
m in fully ionised

thermal plasma with temperature T can be expressed as (see e.g.
Emslie 1978):

dE
dl
= −2πe4Λ

m
me

n
E , (19)

where Λ is the Coulomb logarythm. For non-relativistic parti-
cles, the kinetic energy E = mv2/2 and Eq. (19) can be rewritten
as

dv
dt
= −Kme

m
n
v2

(20)

where K = 4πe4Λ/m2
e and Λ ≈ 20. The Eq. (20) yields vari-

ations in the full velocity δv/δt for Eqs. (17) and (18). The
full velocity in the right-hand side of Eq. (20) is calculated as

v =
√
v2|| + 2µB. Here the drift velocity is disregarded, since (a)

it is normally comparable to or lower than the thermal veloc-
ity vth, and (b) the main component of the drift, uE , is caused
predominantly by bulk plasma motion.

The pitch-angle distribution of high-energy particles in ther-
mal plasma changes with time due to Coulomb collisions as

∂ f
∂t
= K m

me

n
v3
∂

∂α

(
(1 − α2)

∂ f
∂α

)
, (21)

where the pitch-angle is defined as α = v||/v. In terms of indi-
vidual particles, the pitch-angle diffusion represents random de-
flections with respect to a chosen direction. Let us evaluate the
probability of a test-particle to be deflected. Equation (21) means
that the fraction of particles changing its pitch-angle from α to
α + δα within the time interval δt is

Π(v,α,∆α) = δtK m
me

n
v3

1 − (α + ∆α/2)2

∆α2 · (22)

This, in turn, means the following: if individual particles are
deflected by ∆α with probability Π(v,α,∆α) as per Eq. (22),
then the pitch-angle distribution of the whole particle population
should satisfy Eq. (21).

In the numerical scheme used here, the pitch-angle diffu-
sion is implemented through stochastic jumps of a particle pitch-
angle by a fixed value of either ∆α = 0.05 or ∆α = −0.05
after every timestep δt with the probability of Π(v,α,∆α) or
Π(v,α,−∆α), respectively (which means the pitch-angle remains
the same with the probability 1 − Π(v,α,∆α) − Π(v,α,−∆α)).
Hence, the variation in pitch-angle with time can be written as:

δα

δt
= ∆αΠ(v,α,∆α) − ∆αΠ(v,α,−∆α) (23)

with probabilities Π as per Eq. (22).
In each numerical experiment, we calculate trajectories for

∼106 test electrons and protons. Initially, particles are uniformly
distributed within the simulation domain, have Maxwellian ve-
locity distributions corresponding to the temperature of 1 MK,
and are uniformly distributed with respect of the pitch-angle α
from −1 to 1.

The calculations have been performed using the GCA code
based on the second order Runge-Kutta scheme (Gordovskyy
et al. 2010, 2011). In addition to the usual limitations on the in-
tegration timestep (δt % δr/v and δt % v/a, where δr is the
grid step and a is the acceleration), the collisional terms add an-
other requirement: δt % K m

me

n
v3

1−(α+δα/2)2

δα2 , which is necessary

A72, page 6 of 15

M. Gordovskyy et al.: Particle acceleration and transport in twisted loops

Fig. 6. Schematic sketch showing change of connectivity during magnetic reconnection in the twisted loop.

for Π(v,α, δα)! 1. (When Π(v,α, δα) ∼ 1, the scheme used for
pitch-angle scattering calculations becomes unstable, and, obvi-
ously, the probability cannot be Π(v,α, δα) > 1.)

The time-dependent electric and magnetic fields and their
spatial derivatives for the right-hand side of Eqs. (15)–(18) are
taken from the resistive MHD simulations described in Sect. 2.3.
The data for each particle position is derived by linear in-
terpolation of the data within four-dimensional (x, y, z, t) cells
from the ajacent grid points (see Gordovskyy et al. 2011, 2012;
Gordovskyy & Browning 2011). The domain boundaries are
closed for thermal test-particles with E < 1 keV and open for
higher energy particles. Each particle is followed until the end
of simulations at t = 1800t0 or until it leaves the domain through
one of the boundaries.

3.2. Particle trajectories

Typical electron and proton trajectories are shown in the Figs. 7
and 8, respectively. In general, both species are very adiabatic
and hence, behave very similarly, The main difference, of course,
is that protons are much (by factor of ∼43) slower. As a result,
their trajectories are smoother, since the effect of small-scale
fluctuations (in the parallel electric field value, magnetic field
curvature etc) is negligible due to time averaging.

The majority of particles remain in the thermal distribution;
only a few particles (∼5%) are accelerated beyond 1 keV. This
is comparable to typical acceleration efficiencies derived from
observed hard X-ray emission. This validates the use of a test-
particle approach, as the effect of high-energy particles on the
magnetic and electric field should be considerably low.

Particles move predominantly along the magnetic field lines.
Despite the connectivity changes, all the field lines of the twisted
loop remain connected to both footpoints, and there is no open
field. As a result, during the reconnection most of high-energy
particles remain in or around the twisted loop and precipitate
towards one of the footpoints.

Particles accelerated by a parallel electric field in an almost
collisionless corona have a very narrow pitch-angle distribu-
tion around α = ±1, which means they are strongly collimated
along the magnetic field (Gordovskyy et al. 2011; Gordovskyy
& Browning 2012). However, they get scattered due to collisions
in the denser chromosphere, getting a wider pitch-angle distri-
bution. As a result, there is a small but noticeable fraction of
high-energy particles reflected by the converging field back to

the corona. Electrons with energies up to ∼100 keV and nearly
all the protons are thermalised before reaching the lower bound-
ary. Hence, only a small fraction of energetic electrons (with
E > 100 keV) and some particles accelerated near the footpoints
(which did not have enough time to thermalise) can get to the
photosphere (i.e., the lower boundary of the simulation domain).

3.3. Particle energy spectra

There are two main factors affecting particle energies: parallel
electric field and Coulomb scattering. The appearance of a strong
electric field is a transient and local effect, while collisional de-
celeration of high-energy particles is always present. Hence, un-
like in the collisionless models by Gordovskyy et al. (2011) and
Gordovskyy & Browning (2012), it is not possible to charac-
terise the acceleration process by the final spectra in this type
of model, as these spectra are inevitably thermal. We consider
the energy spectra at three different stages of the reconnection
process: just after the kink instability occurs, during the fastest
energy release (i.e., when dEm/dt is highest), and during the de-
cay stage. The energy spectra for protons and electrons for low-
and high-density cases are shown in Figs. 9–12.

The electron energy distributions at the beginning of re-
connection are similar to those obtained in simulations with
no collisions (Gordovskyy & Browning 2011): the spectra are
combinations of a Maxwellian thermal distribution and nearly
power-law high-energy tail. However, in the low-density case
the high-energy tail, surprisingly, appears to be softer than in
previous studies; its power-law index is about 2.0–3.5, which
is observed in many flares. In the high-density case, the “high-
energy” tail is harder, the spectral index is about 1.5–2.0. At the
later stages (t = 1100−1500 t0), the electric fields gradually
decay and the collisions become dominant. This results in the
hardening of the spectra around a few keV, and at some point, a
gap appears between the thermal part and high-energy part. This
spectral hardening at lower energies (of few deka-keV) is similar
to that, which appears in thick-target models.

Comparing electron and proton energy spectra demonstrates
the contrast in acceleration times: electron non-thermal spectra
are formed within ∼1−10 t0 after a kink, while it takes around
10−100 t0 to form a smooth high-energy tail for protons. At the
same time, protons lose their energies due to collisions faster
than electrons with the same energy (since dE/dt ∼ √m/E). As
a result, it is more difficult in a collisional plasma to accelerate
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Twisted coronal loop, scale 2× 105m.

Follow GCA particles (+Coulomb collisions) in the kink-unstable MHD
evolution.

M. Gordovskyy et al.: Particle acceleration and transport in twisted loops

Fig. 9. Electron energy spectra in the
Model A. Times are shown above cor-
responding panels.

Fig. 10. Electron energy spectra in the
Model B. Times are shown above cor-
responding panels.

(For thermal electrons (E = kBT , m = me), this becomes the
standard expresion for Dreicer field.) Obviously, this Ecrit value
for protons is higher by a factor of mp/me than Ecrit for electrons.
Therefore, when the typical electric field in the system is higher
than both Ecrit(protons) and Ecrit(electrons), the proton accelera-
tion efficiency should be similar to that for electrons. However,
when the typical electric field is lower than Ecrit(protons) but
higher than Ecrit(electrons), the number of high-energy protons
should be lower than that of electrons, which is the case in the
Model B.

This difference between the low-density and high-density
cases can also be seen in total energetics. Thus, the total energy
carried by high-energy protons and electrons in the Model A
(low-density case) is nearly equal and is about 6–8% of the en-
ergy released during the reconnection, (although the maximum
total non-thermal proton energy is reached slightly later then
maximum total non-thermal electron energy). At the same time,
the total energy carried by non-thermal electrons in the high-
density case (Model B) reaches ∼4% of the energy released
during reconnection, while protons carry less than 1%. These
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Electron spectra just after the onset of
reconnection. Non-thermal tail thermalises
slowly due to collisions.
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(a) (b)

(c) (d)

Fig. 13. Normalised pitch-angle distri-
butions of high-energy particles (E >
5 keV) during fast reconnection stage
(t = 1120t0). Left panels (a) and
c)) are for electrons; right panels (b)
and d)) are for protons. Upper pan-
els (a) and b)) correspond to the low-
density case (Model A), while lower
panels correspond to the high-density
case (Model B).

perpendicular velocities remain ∼vth and parallel velocitites in-
crease drastically, all non-thermal particles are strongly colli-
mated along magnetic field lines (i.e., vg/v|| " 1), apart from par-
ticles being reflected by converging magnetic field. Collisions,
however, result in effective scattering of supra-thermal particles
with moderate energies at ∼1–10 keV. Pitch-angle distributions
are shown in Fig. 13.

It can be seen that particles in the low-density case (Fig. 13a,
b) are also well-collimated along the field lines, although the
collimation is not as strong as in collisionless models. The ma-
jority of particles (∼80%) have pitch-angles |α| > 0.75. In the
high-density case, however, pitch-angle distributions are more
isotropic: ∼40–50% of particles have pitch-angles of |α| < 0.75.

The pitch-angle distributions also reveal the preferred direc-
tions of acceleration for diferent species. Thus, protons tend to
have positive pitch-angles indicating that they move predomi-
nantly towards y = +6.4L0 footpoint, while electrons tend to
have negative pitch-angles and, hence, move towards the oppo-
site footpoint. This effect can also be seen in spatial distribution
(see next section). Coulomb collisions strongly affect particles in
Model B, and, as the result, the proton-electron footpoint asym-
metry almost disappears in the high-density case.

3.5. Particle spatial distribution and synthetic hard X-ray
intensities

The helicity does not change its sign in the initial configuration,
which means the current has preferential direction. This results
in charge separation at the early stages of reconnection: elec-
trons and protons are accelerated towards different footpoints,
producing the electron-proton asymmetry of footpoints that can
be seen in Fig. 14. As the current structure becomes filamentary
with time, the acceleration process becomes more chaotic and
footpoint asymmetry decreases. At the end of reconnection, only
a slight assymetry can be seen. This is consistent with observa-
tions showing time delay in appearance of a second footpoint
source.

Figure 14 also shows that the footpoint area (which rep-
resents the cross-section of the volume occupied by high-
energy particles just above the photosphere) increases with time.
During the reconnection, the radius of footpoints increases from
∼0.5 Mm to nearly 1.2 Mm. This effect is mainly due to the re-
connection between the field lines of the twisted fluxtube and
ambient field lines (see discussion in Gordovskyy & Browning
2011).

Fig. 14. High-energy (E > 5 keV) electron and proton distribution in
X − Y plane. Most of the particles are concentrated at low heights close
to the footpoints.

Based on the electron distributions derived in Models A
and B, we calculate intensities of the bremsstrahlung hard X-ray
emission from the flaring loop. We use the simplified form of the
bremsstrahlung cross-section (see e.g. Kontar et al. 2002):

I(ε) = const.

∞∫

ε

∫

L

N(E, l)
n(l)

ε
√

E
dEdl. (24)

The synthetic intensity maps are shown in Figs. 15 and 16 for
four different moments. In order to compare them with obser-
vational data, they are smoothed by a Gaussian profile with
the half-width of ∼1.5 Mm (comparable to the RHESSI spatial
resolution). The main difference between the low-density case
(Model A) and high-density case (Model B) is that the latter
shows noticeable extended emission from the loop, while the
low-density case has noticeable emission only from the foot-
points. This can be easily explained by comparing the electron
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High energy pitch angle distribution during fast reconnection stage: Highly biased towards |µ| = 1.

Electrons (left) and protons (right).

A&A 561, A72 (2014)

Fig. 15. Synthetic hard X-ray emission at
10 keV from the simulated flaring loop in low-
density atmosphere.

mean-free-path in these two models: in the low-density model,
the mean free path for the energies ∼10 keV is substantially
longer than the loop length (∼20 Mm), while it is only ∼1 Mm
in the high-density case.

4. Summary

In the present work, we use a combination of MHD and
test-particle methods to study energy release and high-energy

particle motion in a reconnecting twisted coronal loop. The
approach is generally similar to that previously used in 2D
(Gordovskyy et al. 2011) and 3D models (Gordovskyy &
Browning 2011, 2012): time-dependent electric and magnetic
fields and density distributions are used as an input for guiding-
centre test-particle calculations of proton and electron trajecto-
ries. The main benefits from the present model are that

– we use a realistic loop-like structure (similarly to Kliem et al.
2010), and the twist is created by slow footpoint rotation;
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Synthetic Bremsstrahlung intensity at
10 keV based on test-particle distribution

I (ε) ∝
∫ ∞
ε

∫
L
N(E , l)

n(l)

ε
√
E
dEdl (28)

(Kontar et al., 2002)
Initially, emission concentrated at
footpoints, moving up as time progresses.
Higher density case more uniform emission.
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Hands-on examples

Particle equations of motion implemented

I Advection

I Lorentz force

I relativistic GCA

Particle tracing and acceleration in MHD evolution



Motivation Applications Guiding Centre Approximation The examples of the Hands-On-Session References

Particle acceleration in the tilt-kink instability: Keppens et al. (2014)

The “tilt” is an ideal MHD instability of two repelling current channels (Richard et al.,
1990)

Figure 2.1: Equilibrium setup with two magnetic islands in the unit circle.

5

(a) t = 45 (b) t = 55

(c) t = 60 (d) t = 95

Figure 2.2: Evolution of the magnetic field magnitude B, with field lines plotted. The scale is similar to the
scale in Figure 2.1
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(a) t = 45 (b) t = 55

(c) t = 60 (d) t = 95

Figure 2.2: Evolution of the magnetic field magnitude B, with field lines plotted. The scale is similar to the
scale in Figure 2.1

6

(a) t = 45 (b) t = 55

(c) t = 60 (d) t = 95

Figure 2.2: Evolution of the magnetic field magnitude B, with field lines plotted. The scale is similar to the
scale in Figure 2.1

6I Very fast (exponential)
formation of current
sheets

I 2D evolution near
independent of
guide-field
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Particle acceleration in the tilt-kink instability: Keppens et al. (2014)
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Particle acceleration in the tilt-kink instability: Keppens et al. (2014)
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X-point collapse

Force-free
electrodynamics
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X-point collapse
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Coalescence Instability
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Coalescence Instability
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ParticleSnapshot
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The relativistic guiding centre approximation

dR

dt
=

(
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(
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m0γ
∗2v∗2
⊥

2B∗
= M = constant, (31)
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