
Task-based parallelism,
and why it is awesome
Pedro Gonnet, SECS/ICC, Durham University
CSAM-15 Workshop on Computational Solar and Astrophysical
Modeling, Jülich Supercomputing Centre, September 16th, 2015

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.

−→ Computers are not getting faster, but more parallel.
−→ Clusters are only growing in the number of cores per nodes.
−→ Networking hardware is not getting any faster. Or cheaper.

Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.
It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.
The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.

−→ Computers are not getting faster, but more parallel.
−→ Clusters are only growing in the number of cores per nodes.
−→ Networking hardware is not getting any faster. Or cheaper.
Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.
It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.
The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.

−→ Computers are not getting faster, but more parallel.
−→ Clusters are only growing in the number of cores per nodes.
−→ Networking hardware is not getting any faster. Or cheaper.
Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.
It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.
The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.

−→ Computers are not getting faster, but more parallel.
−→ Clusters are only growing in the number of cores per nodes.
−→ Networking hardware is not getting any faster. Or cheaper.
Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.
It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.
The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.
−→ Computers are not getting faster, but more parallel.

−→ Clusters are only growing in the number of cores per nodes.
−→ Networking hardware is not getting any faster. Or cheaper.
Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.
It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.
The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.
−→ Computers are not getting faster, but more parallel.
−→ Clusters are only growing in the number of cores per nodes.

−→ Networking hardware is not getting any faster. Or cheaper.
Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.
It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.
The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.
−→ Computers are not getting faster, but more parallel.
−→ Clusters are only growing in the number of cores per nodes.
−→ Networking hardware is not getting any faster.

Or cheaper.
Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.
It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.
The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.
−→ Computers are not getting faster, but more parallel.
−→ Clusters are only growing in the number of cores per nodes.
−→ Networking hardware is not getting any faster. Or cheaper.

Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.
It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.
The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.
−→ Computers are not getting faster, but more parallel.
−→ Clusters are only growing in the number of cores per nodes.
−→ Networking hardware is not getting any faster. Or cheaper.
Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.

It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.
The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.
−→ Computers are not getting faster, but more parallel.
−→ Clusters are only growing in the number of cores per nodes.
−→ Networking hardware is not getting any faster. Or cheaper.
Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.
It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.

The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Introduction
This talk in a nutshell

Forget most of what you’ve ever learned about parallel computing: most of it
was true 20 years ago, but not today.
−→ Computers are not getting faster, but more parallel.
−→ Clusters are only growing in the number of cores per nodes.
−→ Networking hardware is not getting any faster. Or cheaper.
Task-based parallelism provides good strong scaling for shared-memory
parallel computation on a single node.
It can be used to implement efficient and scalable asynchronous hybrid
shared/distributed-memory parallelism.
The bad news is that since it’s a different paradigm, using it will require you to
re-write most of your codes.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 2/27

Forget what you’ve learned
The problem with distributed-memory parallelism

Distributed-memory parallelism, e.g. using
MPI, is based on data decomposition,
i.e. each processor is assigned part of the
problem to work on and communicates with
its neighbours.
Surface-to-volume ratio problem: As the
number of cores increases, the amount of
computation per core (volume) decreases
while the relative amount of communication
(surface) increases, eventually dominating
the entire computation.
−→We can always do larger simulations, but
not smaller simulations faster.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 3/27

Forget what you’ve learned
The problem with distributed-memory parallelism

Distributed-memory parallelism, e.g. using
MPI, is based on data decomposition,
i.e. each processor is assigned part of the
problem to work on and communicates with
its neighbours.
Surface-to-volume ratio problem: As the
number of cores increases, the amount of
computation per core (volume) decreases
while the relative amount of communication
(surface) increases, eventually dominating
the entire computation.
−→We can always do larger simulations, but
not smaller simulations faster.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 3/27

Forget what you’ve learned
The problem with distributed-memory parallelism

Distributed-memory parallelism, e.g. using
MPI, is based on data decomposition,
i.e. each processor is assigned part of the
problem to work on and communicates with
its neighbours.
Surface-to-volume ratio problem: As the
number of cores increases, the amount of
computation per core (volume) decreases
while the relative amount of communication
(surface) increases, eventually dominating
the entire computation.
−→We can always do larger simulations, but
not smaller simulations faster.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 3/27

Forget what you’ve learned
The problem with distributed-memory parallelism

Distributed-memory parallelism, e.g. using
MPI, is based on data decomposition,
i.e. each processor is assigned part of the
problem to work on and communicates with
its neighbours.
Surface-to-volume ratio problem: As the
number of cores increases, the amount of
computation per core (volume) decreases
while the relative amount of communication
(surface) increases, eventually dominating
the entire computation.
−→We can always do larger simulations, but
not smaller simulations faster.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 3/27

Forget what you’ve learned
The problem with distributed-memory parallelism

Distributed-memory parallelism, e.g. using
MPI, is based on data decomposition,
i.e. each processor is assigned part of the
problem to work on and communicates with
its neighbours.
Surface-to-volume ratio problem: As the
number of cores increases, the amount of
computation per core (volume) decreases
while the relative amount of communication
(surface) increases, eventually dominating
the entire computation.
−→We can always do larger simulations, but
not smaller simulations faster.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 3/27

Forget what you’ve learned
The problem with distributed-memory parallelism

Distributed-memory parallelism, e.g. using
MPI, is based on data decomposition,
i.e. each processor is assigned part of the
problem to work on and communicates with
its neighbours.
Surface-to-volume ratio problem: As the
number of cores increases, the amount of
computation per core (volume) decreases
while the relative amount of communication
(surface) increases, eventually dominating
the entire computation.
−→We can always do larger simulations, but
not smaller simulations faster.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 3/27

Forget what you’ve learned
The problem with distributed-memory parallelism

Distributed-memory parallelism, e.g. using
MPI, is based on data decomposition,
i.e. each processor is assigned part of the
problem to work on and communicates with
its neighbours.
Surface-to-volume ratio problem: As the
number of cores increases, the amount of
computation per core (volume) decreases
while the relative amount of communication
(surface) increases, eventually dominating
the entire computation.
−→We can always do larger simulations, but
not smaller simulations faster.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 3/27

Forget what you’ve learned
The problem with OpenMP

Shared-memory parallelism using OpenMP,
i.e. annotating an inherently serial code, is a
simple way to exploit shared-memory
parallelism.
Concurrency problems need to be addressed
explicitly, e.g. using barriers or atomic
instructions.
These overheads associated with these two
solutions only get worse as the number of
cores increases.

for (i = 0 ; i < N ; i++) {
 ...
 globalvar += ...
 }

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 4/27

Forget what you’ve learned
The problem with OpenMP

Shared-memory parallelism using OpenMP,
i.e. annotating an inherently serial code, is a
simple way to exploit shared-memory
parallelism.
Concurrency problems need to be addressed
explicitly, e.g. using barriers or atomic
instructions.
These overheads associated with these two
solutions only get worse as the number of
cores increases.

#pragma omp parallel for
for (i = 0 ; i < N ; i++) {
 ...
 globalvar += ...
 }

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 4/27

Forget what you’ve learned
The problem with OpenMP

Shared-memory parallelism using OpenMP,
i.e. annotating an inherently serial code, is a
simple way to exploit shared-memory
parallelism.
Concurrency problems need to be addressed
explicitly, e.g. using barriers or atomic
instructions.
These overheads associated with these two
solutions only get worse as the number of
cores increases.

#pragma omp parallel for
for (i = 0 ; i < N ; i++) {
 ...
 #pragma omp critical
 globalvar += ...
 }

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 4/27

Forget what you’ve learned
The problem with OpenMP

Shared-memory parallelism using OpenMP,
i.e. annotating an inherently serial code, is a
simple way to exploit shared-memory
parallelism.
Concurrency problems need to be addressed
explicitly, e.g. using barriers or atomic
instructions.
These overheads associated with these two
solutions only get worse as the number of
cores increases.

#pragma omp parallel for
for (i = 0 ; i < N ; i++) {
 ...
 #pragma omp critical
 globalvar += ...
 }

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 4/27

Forget what you’ve learned
The MPI/OpenMP paradigm is wrong

Both MPI and OpenMP rely on the SPMD
(Single Program/Multiple Data)
programming model, i.e. the same bit of
code is executed by all threads/nodes at
more or less the same time.
This means that serial bits or communication
create synchronization points.
This also means that any expensive bits,
e.g. communication or disk I/O, will happen
all at the same time.
This creates bottlenecks throughout the code
which eventually kill any potential scaling.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 5/27

Forget what you’ve learned
The MPI/OpenMP paradigm is wrong

Both MPI and OpenMP rely on the SPMD
(Single Program/Multiple Data)
programming model, i.e. the same bit of
code is executed by all threads/nodes at
more or less the same time.
This means that serial bits or communication
create synchronization points.
This also means that any expensive bits,
e.g. communication or disk I/O, will happen
all at the same time.
This creates bottlenecks throughout the code
which eventually kill any potential scaling.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 5/27

Forget what you’ve learned
The MPI/OpenMP paradigm is wrong

Both MPI and OpenMP rely on the SPMD
(Single Program/Multiple Data)
programming model, i.e. the same bit of
code is executed by all threads/nodes at
more or less the same time.
This means that serial bits or communication
create synchronization points.
This also means that any expensive bits,
e.g. communication or disk I/O, will happen
all at the same time.
This creates bottlenecks throughout the code
which eventually kill any potential scaling.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 5/27

Forget what you’ve learned
The MPI/OpenMP paradigm is wrong

Both MPI and OpenMP rely on the SPMD
(Single Program/Multiple Data)
programming model, i.e. the same bit of
code is executed by all threads/nodes at
more or less the same time.
This means that serial bits or communication
create synchronization points.
This also means that any expensive bits,
e.g. communication or disk I/O, will happen
all at the same time.
This creates bottlenecks throughout the code
which eventually kill any potential scaling.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 5/27

Forget what you’ve learned
In summary

MPI and OpenMP will do the job for large problems on a small number of
machines.
Both approaches, however, scale badly for fixed-size problems on increasing
number of cores.
Scaling is currently being pushed by pushing the hardware, but this is an
incredibly expensive and ultimately limited strategy.
The problems are inherent to the underlying programming model, and thus
cannot be fixed without changing the model.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 6/27

Forget what you’ve learned
In summary

MPI and OpenMP will do the job for large problems on a small number of
machines.
Both approaches, however, scale badly for fixed-size problems on increasing
number of cores.
Scaling is currently being pushed by pushing the hardware, but this is an
incredibly expensive and ultimately limited strategy.
The problems are inherent to the underlying programming model, and thus
cannot be fixed without changing the model.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 6/27

Forget what you’ve learned
In summary

MPI and OpenMP will do the job for large problems on a small number of
machines.
Both approaches, however, scale badly for fixed-size problems on increasing
number of cores.
Scaling is currently being pushed by pushing the hardware, but this is an
incredibly expensive and ultimately limited strategy.
The problems are inherent to the underlying programming model, and thus
cannot be fixed without changing the model.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 6/27

Forget what you’ve learned
In summary

MPI and OpenMP will do the job for large problems on a small number of
machines.
Both approaches, however, scale badly for fixed-size problems on increasing
number of cores.
Scaling is currently being pushed by pushing the hardware, but this is an
incredibly expensive and ultimately limited strategy.
The problems are inherent to the underlying programming model, and thus
cannot be fixed without changing the model.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 6/27

Forget what you’ve learned
In summary

MPI and OpenMP will do the job for large problems on a small number of
machines.
Both approaches, however, scale badly for fixed-size problems on increasing
number of cores.
Scaling is currently being pushed by pushing the hardware, but this is an
incredibly expensive and ultimately limited strategy.
The problems are inherent to the underlying programming model, and thus
cannot be fixed without changing the model.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 6/27

Forget what you’ve learned
In summary

MPI and OpenMP will do the job for large problems on a small number of
machines.
Both approaches, however, scale badly for fixed-size problems on increasing
number of cores.
Scaling is currently being pushed by pushing the hardware, but this is an
incredibly expensive and ultimately limited strategy.
The problems are inherent to the underlying programming model, and thus
cannot be fixed without changing the model.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 6/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.

We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.

We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.

We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.

We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 7/27

Task-based parallelism
Implementations

Several task-based implementations exist, and differ mainly in how tasks and
dependencies are created/specified.
Task spawning: any function can spawn a task, i.e. call a function that will be
executed as a task. Dependencies are implicitly given by the order in which
tasks are spawned, e.g. Cilk, OpenMP 4.0.
Dependency deduction: tasks and the data they operate on are specified
explicitly, dependencies are deduced from the data and the order in which the
tasks are created, e.g. QUARK, OmpSs, StarPU.
Explicit task graph construction: tasks and dependencies are explicitly
specified by the user, e.g. Intel TBB, QuickSched.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 8/27

Task-based parallelism
Implementations

Several task-based implementations exist, and differ mainly in how tasks and
dependencies are created/specified.
Task spawning: any function can spawn a task, i.e. call a function that will be
executed as a task. Dependencies are implicitly given by the order in which
tasks are spawned, e.g. Cilk, OpenMP 4.0.
Dependency deduction: tasks and the data they operate on are specified
explicitly, dependencies are deduced from the data and the order in which the
tasks are created, e.g. QUARK, OmpSs, StarPU.
Explicit task graph construction: tasks and dependencies are explicitly
specified by the user, e.g. Intel TBB, QuickSched.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 8/27

Task-based parallelism
Implementations

Several task-based implementations exist, and differ mainly in how tasks and
dependencies are created/specified.
Task spawning: any function can spawn a task, i.e. call a function that will be
executed as a task. Dependencies are implicitly given by the order in which
tasks are spawned, e.g. Cilk, OpenMP 4.0.
Dependency deduction: tasks and the data they operate on are specified
explicitly, dependencies are deduced from the data and the order in which the
tasks are created, e.g. QUARK, OmpSs, StarPU.
Explicit task graph construction: tasks and dependencies are explicitly
specified by the user, e.g. Intel TBB, QuickSched.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 8/27

Task-based parallelism
Implementations

Several task-based implementations exist, and differ mainly in how tasks and
dependencies are created/specified.
Task spawning: any function can spawn a task, i.e. call a function that will be
executed as a task. Dependencies are implicitly given by the order in which
tasks are spawned, e.g. Cilk, OpenMP 4.0.
Dependency deduction: tasks and the data they operate on are specified
explicitly, dependencies are deduced from the data and the order in which the
tasks are created, e.g. QUARK, OmpSs, StarPU.
Explicit task graph construction: tasks and dependencies are explicitly
specified by the user, e.g. Intel TBB, QuickSched.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 8/27

Task-based parallelism
Implementations

Several task-based implementations exist, and differ mainly in how tasks and
dependencies are created/specified.
Task spawning: any function can spawn a task, i.e. call a function that will be
executed as a task. Dependencies are implicitly given by the order in which
tasks are spawned, e.g. Cilk, OpenMP 4.0.
Dependency deduction: tasks and the data they operate on are specified
explicitly, dependencies are deduced from the data and the order in which the
tasks are created, e.g. QUARK, OmpSs, StarPU.
Explicit task graph construction: tasks and dependencies are explicitly
specified by the user, e.g. Intel TBB, QuickSched.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 8/27

Task-based parallelism
Modelling constraints with resources

In many task-based implementations, conflicts
are modeled by adding artificial dependencies
between conflicting tasks, introducing additional
constraints which can severely impair scalability.
Instead, we will model conflicts via shared
resources, i.e. two or more tasks conflict if they
require the same resource.
A task will only execute if it can get exclusive
locks on all its resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 9/27

Task-based parallelism
Modelling constraints with resources

In many task-based implementations, conflicts
are modeled by adding artificial dependencies
between conflicting tasks, introducing additional
constraints which can severely impair scalability.
Instead, we will model conflicts via shared
resources, i.e. two or more tasks conflict if they
require the same resource.
A task will only execute if it can get exclusive
locks on all its resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 9/27

Task-based parallelism
Modelling constraints with resources

In many task-based implementations, conflicts
are modeled by adding artificial dependencies
between conflicting tasks, introducing additional
constraints which can severely impair scalability.
Instead, we will model conflicts via shared
resources, i.e. two or more tasks conflict if they
require the same resource.
A task will only execute if it can get exclusive
locks on all its resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 9/27

Task-based parallelism
Modelling constraints with resources

In many task-based implementations, conflicts
are modeled by adding artificial dependencies
between conflicting tasks, introducing additional
constraints which can severely impair scalability.
Instead, we will model conflicts via shared
resources, i.e. two or more tasks conflict if they
require the same resource.
A task will only execute if it can get exclusive
locks on all its resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 9/27

Task-based parallelism
Modelling constraints with resources

In many task-based implementations, conflicts
are modeled by adding artificial dependencies
between conflicting tasks, introducing additional
constraints which can severely impair scalability.
Instead, we will model conflicts via shared
resources, i.e. two or more tasks conflict if they
require the same resource.
A task will only execute if it can get exclusive
locks on all its resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 9/27

Task-based parallelism
Modelling constraints with resources

In many task-based implementations, conflicts
are modeled by adding artificial dependencies
between conflicting tasks, introducing additional
constraints which can severely impair scalability.
Instead, we will model conflicts via shared
resources, i.e. two or more tasks conflict if they
require the same resource.
A task will only execute if it can get exclusive
locks on all its resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 9/27

Task-based parallelism
Main advantages

The order in which the tasks are processed is highly dynamic and adapts
automatically to load imbalances.
If the dependencies and conflicts are specified correctly, we do not have to
worry about concurrency at the level of the individual tasks.
−→ No need for expensive explicit locking, synchronization, or atomic
operations.
However, this usually means that we have to completely re-think our entire
computation, e.g. redesign it from scratch to make it task-based.
The most interesting aspect, though, is what we can do with this
representation of our computations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 10/27

Task-based parallelism
Main advantages

The order in which the tasks are processed is highly dynamic and adapts
automatically to load imbalances.
If the dependencies and conflicts are specified correctly, we do not have to
worry about concurrency at the level of the individual tasks.
−→ No need for expensive explicit locking, synchronization, or atomic
operations.
However, this usually means that we have to completely re-think our entire
computation, e.g. redesign it from scratch to make it task-based.
The most interesting aspect, though, is what we can do with this
representation of our computations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 10/27

Task-based parallelism
Main advantages

The order in which the tasks are processed is highly dynamic and adapts
automatically to load imbalances.
If the dependencies and conflicts are specified correctly, we do not have to
worry about concurrency at the level of the individual tasks.
−→ No need for expensive explicit locking, synchronization, or atomic
operations.
However, this usually means that we have to completely re-think our entire
computation, e.g. redesign it from scratch to make it task-based.
The most interesting aspect, though, is what we can do with this
representation of our computations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 10/27

Task-based parallelism
Main advantages

The order in which the tasks are processed is highly dynamic and adapts
automatically to load imbalances.
If the dependencies and conflicts are specified correctly, we do not have to
worry about concurrency at the level of the individual tasks.
−→ No need for expensive explicit locking, synchronization, or atomic
operations.
However, this usually means that we have to completely re-think our entire
computation, e.g. redesign it from scratch to make it task-based.
The most interesting aspect, though, is what we can do with this
representation of our computations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 10/27

Task-based parallelism
Main advantages

The order in which the tasks are processed is highly dynamic and adapts
automatically to load imbalances.
If the dependencies and conflicts are specified correctly, we do not have to
worry about concurrency at the level of the individual tasks.
−→ No need for expensive explicit locking, synchronization, or atomic
operations.
However, this usually means that we have to completely re-think our entire
computation, e.g. redesign it from scratch to make it task-based.
The most interesting aspect, though, is what we can do with this
representation of our computations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 10/27

Task-based algorithms
Neighbour-finding with trees

Spatial trees are the most commonly used
approach to neighbour-finding, as the particle
distribution can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 11/27

Task-based algorithms
Neighbour-finding with trees

Spatial trees are the most commonly used
approach to neighbour-finding, as the particle
distribution can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 11/27

Task-based algorithms
Neighbour-finding with trees

Spatial trees are the most commonly used
approach to neighbour-finding, as the particle
distribution can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 11/27

Task-based algorithms
Neighbour-finding with trees

Spatial trees are the most commonly used
approach to neighbour-finding, as the particle
distribution can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 11/27

Task-based algorithms
Neighbour-finding with trees

Spatial trees are the most commonly used
approach to neighbour-finding, as the particle
distribution can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 11/27

Task-based algorithms
Neighbour-finding with trees

Spatial trees are the most commonly used
approach to neighbour-finding, as the particle
distribution can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 11/27

Task-based algorithms
Neighbour-finding with trees

Spatial trees are the most commonly used
approach to neighbour-finding, as the particle
distribution can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 11/27

Task-based algorithms
Neighbour-finding with trees

Spatial trees are the most commonly used
approach to neighbour-finding, as the particle
distribution can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 11/27

Task-based algorithms
Neighbour-finding with trees

Spatial trees are the most commonly used
approach to neighbour-finding, as the particle
distribution can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 11/27

Task-based algorithms
Hierarchical cell pairs

We start by splitting the simulation domain into
rectangular cells of edge length at least hmax.
All interacting particle pairs are then in either in
the same cell, or in a pair of neighbouring cells.
Finding all neighbours within each cell or
between each pair of cells can be used as a task.
If the particles in the cell or cell pair are
sufficiently small, the task can be split.
Finally, the particles in each cell pair are first
sorted along the cell pair axis to speed-up
neighbour-finding.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 12/27

Task-based algorithms
Hierarchical cell pairs

We start by splitting the simulation domain into
rectangular cells of edge length at least hmax.
All interacting particle pairs are then in either in
the same cell, or in a pair of neighbouring cells.
Finding all neighbours within each cell or
between each pair of cells can be used as a task.
If the particles in the cell or cell pair are
sufficiently small, the task can be split.
Finally, the particles in each cell pair are first
sorted along the cell pair axis to speed-up
neighbour-finding.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 12/27

Task-based algorithms
Hierarchical cell pairs

We start by splitting the simulation domain into
rectangular cells of edge length at least hmax.
All interacting particle pairs are then in either in
the same cell, or in a pair of neighbouring cells.
Finding all neighbours within each cell or
between each pair of cells can be used as a task.
If the particles in the cell or cell pair are
sufficiently small, the task can be split.
Finally, the particles in each cell pair are first
sorted along the cell pair axis to speed-up
neighbour-finding.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 12/27

Task-based algorithms
Hierarchical cell pairs

We start by splitting the simulation domain into
rectangular cells of edge length at least hmax.
All interacting particle pairs are then in either in
the same cell, or in a pair of neighbouring cells.
Finding all neighbours within each cell or
between each pair of cells can be used as a task.
If the particles in the cell or cell pair are
sufficiently small, the task can be split.
Finally, the particles in each cell pair are first
sorted along the cell pair axis to speed-up
neighbour-finding.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 12/27

Task-based algorithms
Hierarchical cell pairs

We start by splitting the simulation domain into
rectangular cells of edge length at least hmax.
All interacting particle pairs are then in either in
the same cell, or in a pair of neighbouring cells.
Finding all neighbours within each cell or
between each pair of cells can be used as a task.
If the particles in the cell or cell pair are
sufficiently small, the task can be split.
Finally, the particles in each cell pair are first
sorted along the cell pair axis to speed-up
neighbour-finding.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 12/27

Task-based algorithms
Hierarchical cell pairs

We start by splitting the simulation domain into
rectangular cells of edge length at least hmax.
All interacting particle pairs are then in either in
the same cell, or in a pair of neighbouring cells.
Finding all neighbours within each cell or
between each pair of cells can be used as a task.
If the particles in the cell or cell pair are
sufficiently small, the task can be split.
Finally, the particles in each cell pair are first
sorted along the cell pair axis to speed-up
neighbour-finding.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 12/27

Task-based algorithms
Hierarchical cell pairs

We start by splitting the simulation domain into
rectangular cells of edge length at least hmax.
All interacting particle pairs are then in either in
the same cell, or in a pair of neighbouring cells.
Finding all neighbours within each cell or
between each pair of cells can be used as a task.
If the particles in the cell or cell pair are
sufficiently small, the task can be split.
Finally, the particles in each cell pair are first
sorted along the cell pair axis to speed-up
neighbour-finding.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 12/27

Task-based algorithms
Hierarchical cell pairs

We start by splitting the simulation domain into
rectangular cells of edge length at least hmax.
All interacting particle pairs are then in either in
the same cell, or in a pair of neighbouring cells.
Finding all neighbours within each cell or
between each pair of cells can be used as a task.
If the particles in the cell or cell pair are
sufficiently small, the task can be split.
Finally, the particles in each cell pair are first
sorted along the cell pair axis to speed-up
neighbour-finding.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 12/27

Task-based algorithms
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each pair-interaction task depends on the sort
tasks of the cells involved.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
Finally, integrator tasks for each cell depend on
the forces having been computed.

force

density

ghost

sort

sort

integrator

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 13/27

Task-based algorithms
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each pair-interaction task depends on the sort
tasks of the cells involved.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
Finally, integrator tasks for each cell depend on
the forces having been computed.

force

density

ghost

sort

sort

integrator

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 13/27

Task-based algorithms
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each pair-interaction task depends on the sort
tasks of the cells involved.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
Finally, integrator tasks for each cell depend on
the forces having been computed.

force

density

ghost

sort

sort

integrator

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 13/27

Task-based algorithms
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each pair-interaction task depends on the sort
tasks of the cells involved.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
Finally, integrator tasks for each cell depend on
the forces having been computed.

force

density

ghost

sort

sort

integrator

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 13/27

Task-based algorithms
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each pair-interaction task depends on the sort
tasks of the cells involved.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
Finally, integrator tasks for each cell depend on
the forces having been computed.

force

density

ghost

sort

sort

integrator

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 13/27

Task-based algorithms
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each pair-interaction task depends on the sort
tasks of the cells involved.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
Finally, integrator tasks for each cell depend on
the forces having been computed.

force

density

ghost

sort

sort

integrator

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 13/27

Task-based algorithms
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each pair-interaction task depends on the sort
tasks of the cells involved.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
Finally, integrator tasks for each cell depend on
the forces having been computed.

force

density

ghost

sort

sort

integrator

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 13/27

Task-based algorithms
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each pair-interaction task depends on the sort
tasks of the cells involved.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
Finally, integrator tasks for each cell depend on
the forces having been computed.

force

density

ghost

sort

sort

integrator

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 13/27

Task-based algorithms
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each pair-interaction task depends on the sort
tasks of the cells involved.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
Finally, integrator tasks for each cell depend on
the forces having been computed.

force

density

ghost

sort

sort

integrator

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 13/27

Task-based algorithms
Task-based parallelism in action

0 50 100 150 200 250 300 350

4

8

12

16

20

24

28

32

time (ms)

c
o

re
 I

D

SWIFT tasks

Task execution for a single iteration of a 1 M-particle SPH simulation on 32
cores (4×8-core Intel E5-2670).

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 14/27

Hybrid parallelism using tasks
Distributed-memory parallelism

Three main problems:
I Surface-to-volume ratio problem.
I Load-balancing accross distributed-memory nodes.
I Communication latencies between distributed-memory nodes.

The first problem is implicitly attenuated by using a hybrid
shared/distributed-memory parallel scheme.
The second and third problem can be solved using task-based parallelism,
i.e. exploiting the task/resource information.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 15/27

Hybrid parallelism using tasks
Distributed-memory parallelism

Three main problems:
I Surface-to-volume ratio problem.
I Load-balancing accross distributed-memory nodes.
I Communication latencies between distributed-memory nodes.

The first problem is implicitly attenuated by using a hybrid
shared/distributed-memory parallel scheme.
The second and third problem can be solved using task-based parallelism,
i.e. exploiting the task/resource information.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 15/27

Hybrid parallelism using tasks
Distributed-memory parallelism

Three main problems:
I Surface-to-volume ratio problem.
I Load-balancing accross distributed-memory nodes.
I Communication latencies between distributed-memory nodes.

The first problem is implicitly attenuated by using a hybrid
shared/distributed-memory parallel scheme.
The second and third problem can be solved using task-based parallelism,
i.e. exploiting the task/resource information.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 15/27

Hybrid parallelism using tasks
Distributed-memory parallelism

Three main problems:
I Surface-to-volume ratio problem.
I Load-balancing accross distributed-memory nodes.
I Communication latencies between distributed-memory nodes.

The first problem is implicitly attenuated by using a hybrid
shared/distributed-memory parallel scheme.
The second and third problem can be solved using task-based parallelism,
i.e. exploiting the task/resource information.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 15/27

Hybrid parallelism using tasks
Distributed-memory parallelism

Three main problems:
I Surface-to-volume ratio problem.
I Load-balancing accross distributed-memory nodes.
I Communication latencies between distributed-memory nodes.

The first problem is implicitly attenuated by using a hybrid
shared/distributed-memory parallel scheme.
The second and third problem can be solved using task-based parallelism,
i.e. exploiting the task/resource information.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 15/27

Hybrid parallelism using tasks
Distributed-memory parallelism

Three main problems:
I Surface-to-volume ratio problem.
I Load-balancing accross distributed-memory nodes.
I Communication latencies between distributed-memory nodes.

The first problem is implicitly attenuated by using a hybrid
shared/distributed-memory parallel scheme.
The second and third problem can be solved using task-based parallelism,
i.e. exploiting the task/resource information.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 15/27

Hybrid parallelism using tasks
Distributed-memory parallelism

Three main problems:
I Surface-to-volume ratio problem.
I Load-balancing accross distributed-memory nodes.
I Communication latencies between distributed-memory nodes.

The first problem is implicitly attenuated by using a hybrid
shared/distributed-memory parallel scheme.
The second and third problem can be solved using task-based parallelism,
i.e. exploiting the task/resource information.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 15/27

Hybrid parallelism using tasks
Task-based domain decomposition

The task DAG and resources can be
converted to a weighted graph in
which

I Every resource is a node.
I Evey task spanning more than one

resource is an edge between the
resources/nodes it uses.

The weights for the nodes and edges
are set to the computational cost of
the tasks involved.
Partitioning the graph corresponds
to partitioning the work, and not just
the data, involved in a computation.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 16/27

Hybrid parallelism using tasks
Task-based domain decomposition

The task DAG and resources can be
converted to a weighted graph in
which

I Every resource is a node.
I Evey task spanning more than one

resource is an edge between the
resources/nodes it uses.

The weights for the nodes and edges
are set to the computational cost of
the tasks involved.
Partitioning the graph corresponds
to partitioning the work, and not just
the data, involved in a computation.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 16/27

Hybrid parallelism using tasks
Task-based domain decomposition

The task DAG and resources can be
converted to a weighted graph in
which

I Every resource is a node.
I Evey task spanning more than one

resource is an edge between the
resources/nodes it uses.

The weights for the nodes and edges
are set to the computational cost of
the tasks involved.
Partitioning the graph corresponds
to partitioning the work, and not just
the data, involved in a computation.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 16/27

Hybrid parallelism using tasks
Task-based domain decomposition

The task DAG and resources can be
converted to a weighted graph in
which

I Every resource is a node.
I Evey task spanning more than one

resource is an edge between the
resources/nodes it uses.

The weights for the nodes and edges
are set to the computational cost of
the tasks involved.
Partitioning the graph corresponds
to partitioning the work, and not just
the data, involved in a computation.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 16/27

Hybrid parallelism using tasks
Task-based domain decomposition

The task DAG and resources can be
converted to a weighted graph in
which

I Every resource is a node.
I Evey task spanning more than one

resource is an edge between the
resources/nodes it uses.

The weights for the nodes and edges
are set to the computational cost of
the tasks involved.
Partitioning the graph corresponds
to partitioning the work, and not just
the data, involved in a computation.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 16/27

Hybrid parallelism using tasks
Task-based asynchronous communication

Tasks spanning the domain
decomposition are duplicated and
executed on both nodes.
Each task distinguishes between
local and foreign resources.
Foreign resources need to be copied
over before they can be used.
Insert send/receive tasks and
dependencies accross nodes for each
foreign resource.
All these tasks and dependencies
can be created automatically.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 17/27

Hybrid parallelism using tasks
Task-based asynchronous communication

Tasks spanning the domain
decomposition are duplicated and
executed on both nodes.
Each task distinguishes between
local and foreign resources.
Foreign resources need to be copied
over before they can be used.
Insert send/receive tasks and
dependencies accross nodes for each
foreign resource.
All these tasks and dependencies
can be created automatically.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 17/27

Hybrid parallelism using tasks
Task-based asynchronous communication

Tasks spanning the domain
decomposition are duplicated and
executed on both nodes.
Each task distinguishes between
local and foreign resources.
Foreign resources need to be copied
over before they can be used.
Insert send/receive tasks and
dependencies accross nodes for each
foreign resource.
All these tasks and dependencies
can be created automatically.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 17/27

Hybrid parallelism using tasks
Task-based asynchronous communication

Tasks spanning the domain
decomposition are duplicated and
executed on both nodes.
Each task distinguishes between
local and foreign resources.
Foreign resources need to be copied
over before they can be used.
Insert send/receive tasks and
dependencies accross nodes for each
foreign resource.
All these tasks and dependencies
can be created automatically.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 17/27

Hybrid parallelism using tasks
Task-based asynchronous communication

Tasks spanning the domain
decomposition are duplicated and
executed on both nodes.
Each task distinguishes between
local and foreign resources.
Foreign resources need to be copied
over before they can be used.
Insert send/receive tasks and
dependencies accross nodes for each
foreign resource.
All these tasks and dependencies
can be created automatically.

recv send

MPI

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 17/27

Hybrid parallelism using tasks
Task-based asynchronous communication

Tasks spanning the domain
decomposition are duplicated and
executed on both nodes.
Each task distinguishes between
local and foreign resources.
Foreign resources need to be copied
over before they can be used.
Insert send/receive tasks and
dependencies accross nodes for each
foreign resource.
All these tasks and dependencies
can be created automatically.

recv send

MPI

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 17/27

Hybrid parallelism using tasks
Task-based asynchronous communication

Tasks spanning the domain
decomposition are duplicated and
executed on both nodes.
Each task distinguishes between
local and foreign resources.
Foreign resources need to be copied
over before they can be used.
Insert send/receive tasks and
dependencies accross nodes for each
foreign resource.
All these tasks and dependencies
can be created automatically.

recv send

MPI

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 17/27

Hybrid parallelism using tasks
What this looks like in SWIFT

In SWIFT, the domain decomposition
happens along the cell edges, i.e. the
particle cells are indidvidual
resources.
We have to copy the particle data
twice:

I Once to send the particle positions for
the density computation,

I Once to send the particle densities for
the force computation.

Two send/recv tasks per border cell,
i.e. a lot of communication tasks.

force

density

ghost

sort

integrator

ρ

x

ρ

x

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 18/27

Hybrid parallelism using tasks
What this looks like in SWIFT

In SWIFT, the domain decomposition
happens along the cell edges, i.e. the
particle cells are indidvidual
resources.
We have to copy the particle data
twice:

I Once to send the particle positions for
the density computation,

I Once to send the particle densities for
the force computation.

Two send/recv tasks per border cell,
i.e. a lot of communication tasks.

force

density

ghost

sort

integrator

ρ

x

ρ

x

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 18/27

Hybrid parallelism using tasks
What this looks like in SWIFT

In SWIFT, the domain decomposition
happens along the cell edges, i.e. the
particle cells are indidvidual
resources.
We have to copy the particle data
twice:

I Once to send the particle positions for
the density computation,

I Once to send the particle densities for
the force computation.

Two send/recv tasks per border cell,
i.e. a lot of communication tasks.

force

density

ghost

sort

integrator

ρ

x

ρ

x

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 18/27

Hybrid parallelism using tasks
What this looks like in SWIFT

In SWIFT, the domain decomposition
happens along the cell edges, i.e. the
particle cells are indidvidual
resources.
We have to copy the particle data
twice:

I Once to send the particle positions for
the density computation,

I Once to send the particle densities for
the force computation.

Two send/recv tasks per border cell,
i.e. a lot of communication tasks.

force

density

ghost

sort

integrator

ρ

x

ρ

x

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 18/27

Hybrid parallelism using tasks
What this looks like in SWIFT

In SWIFT, the domain decomposition
happens along the cell edges, i.e. the
particle cells are indidvidual
resources.
We have to copy the particle data
twice:

I Once to send the particle positions for
the density computation,

I Once to send the particle densities for
the force computation.

Two send/recv tasks per border cell,
i.e. a lot of communication tasks.

force

density

ghost

sort

integrator

ρ

x

ρ

x

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 18/27

Hybrid parallelism using tasks
What this looks like in SWIFT

Communication tasks do not perform any computation:
I Call MPI Isend/MPI Irecvwhen enqueued.
I Dependencies are released when MPI Test says the data has been sent/received.

While communication is happening, other strictly local tasks are executed.
−→ Truly asynchronous communication, latencies are completely masked by
the computation.
Slightly more complicated treatment for dependencies that span nodes,
modelled by sending/receiving shared resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 19/27

Hybrid parallelism using tasks
What this looks like in SWIFT

Communication tasks do not perform any computation:
I Call MPI Isend/MPI Irecvwhen enqueued.
I Dependencies are released when MPI Test says the data has been sent/received.

While communication is happening, other strictly local tasks are executed.
−→ Truly asynchronous communication, latencies are completely masked by
the computation.
Slightly more complicated treatment for dependencies that span nodes,
modelled by sending/receiving shared resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 19/27

Hybrid parallelism using tasks
What this looks like in SWIFT

Communication tasks do not perform any computation:
I Call MPI Isend/MPI Irecvwhen enqueued.
I Dependencies are released when MPI Test says the data has been sent/received.

While communication is happening, other strictly local tasks are executed.
−→ Truly asynchronous communication, latencies are completely masked by
the computation.
Slightly more complicated treatment for dependencies that span nodes,
modelled by sending/receiving shared resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 19/27

Hybrid parallelism using tasks
What this looks like in SWIFT

Communication tasks do not perform any computation:
I Call MPI Isend/MPI Irecvwhen enqueued.
I Dependencies are released when MPI Test says the data has been sent/received.

While communication is happening, other strictly local tasks are executed.
−→ Truly asynchronous communication, latencies are completely masked by
the computation.
Slightly more complicated treatment for dependencies that span nodes,
modelled by sending/receiving shared resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 19/27

Hybrid parallelism using tasks
What this looks like in SWIFT

Communication tasks do not perform any computation:
I Call MPI Isend/MPI Irecvwhen enqueued.
I Dependencies are released when MPI Test says the data has been sent/received.

While communication is happening, other strictly local tasks are executed.
−→ Truly asynchronous communication, latencies are completely masked by
the computation.
Slightly more complicated treatment for dependencies that span nodes,
modelled by sending/receiving shared resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 19/27

Hybrid parallelism using tasks
What this looks like in SWIFT

Communication tasks do not perform any computation:
I Call MPI Isend/MPI Irecvwhen enqueued.
I Dependencies are released when MPI Test says the data has been sent/received.

While communication is happening, other strictly local tasks are executed.
−→ Truly asynchronous communication, latencies are completely masked by
the computation.
Slightly more complicated treatment for dependencies that span nodes,
modelled by sending/receiving shared resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 19/27

Hybrid parallelism using tasks
What this looks like in SWIFT

Communication tasks do not perform any computation:
I Call MPI Isend/MPI Irecvwhen enqueued.
I Dependencies are released when MPI Test says the data has been sent/received.

While communication is happening, other strictly local tasks are executed.
−→ Truly asynchronous communication, latencies are completely masked by
the computation.
Slightly more complicated treatment for dependencies that span nodes,
modelled by sending/receiving shared resources.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 19/27

Hybrid parallelism using tasks
What this looks like in SWIFT

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

time (ms)

n
o
d
e
 I
D

SWIFT tasks

1 M particle SPH simulation using SWIFT on 8× 12-core nodes of the COSMA4
cluster.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 20/27

Hybrid parallelism using tasks
Forget what you’ve learned

Most experienced MPI users will advise against creating so many send/recv
tasks.
Since all communication is asynchronous, we don’t really care about latencies.
Spreading the communication throughout the computation actually reduces
load on the network.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 21/27

Hybrid parallelism using tasks
Forget what you’ve learned

Most experienced MPI users will advise against creating so many send/recv
tasks.
Since all communication is asynchronous, we don’t really care about latencies.
Spreading the communication throughout the computation actually reduces
load on the network.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 21/27

Hybrid parallelism using tasks
Forget what you’ve learned

Most experienced MPI users will advise against creating so many send/recv
tasks.
Since all communication is asynchronous, we don’t really care about latencies.
Spreading the communication throughout the computation actually reduces
load on the network.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 21/27

Software
QuickSched

Platform-independent Open-Source library implementing the task-based
parallel model and scheduler with conflicts described herein.
Plain old C-language library built on top of either pthreads or OpenMP, no
fancy language/compiler extensions needed.
Task scheduling on CUDA GPUs with automatic generation of load/unload
tasks and their dependencies.
Under development: Fully automatic hybrid shared/distributed-memory
parallelism.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 22/27

Software
QuickSched

Platform-independent Open-Source library implementing the task-based
parallel model and scheduler with conflicts described herein.
Plain old C-language library built on top of either pthreads or OpenMP, no
fancy language/compiler extensions needed.
Task scheduling on CUDA GPUs with automatic generation of load/unload
tasks and their dependencies.
Under development: Fully automatic hybrid shared/distributed-memory
parallelism.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 22/27

Software
QuickSched

Platform-independent Open-Source library implementing the task-based
parallel model and scheduler with conflicts described herein.
Plain old C-language library built on top of either pthreads or OpenMP, no
fancy language/compiler extensions needed.
Task scheduling on CUDA GPUs with automatic generation of load/unload
tasks and their dependencies.
Under development: Fully automatic hybrid shared/distributed-memory
parallelism.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 22/27

Software
QuickSched

Platform-independent Open-Source library implementing the task-based
parallel model and scheduler with conflicts described herein.
Plain old C-language library built on top of either pthreads or OpenMP, no
fancy language/compiler extensions needed.
Task scheduling on CUDA GPUs with automatic generation of load/unload
tasks and their dependencies.
Under development: Fully automatic hybrid shared/distributed-memory
parallelism.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 22/27

Software
QuickSched

Platform-independent Open-Source library implementing the task-based
parallel model and scheduler with conflicts described herein.
Plain old C-language library built on top of either pthreads or OpenMP, no
fancy language/compiler extensions needed.
Task scheduling on CUDA GPUs with automatic generation of load/unload
tasks and their dependencies.
Under development: Fully automatic hybrid shared/distributed-memory
parallelism.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 22/27

Software
QuickSched

0 50 100 150 200 250
0

8

16

24

32

40

48

56

time (ms)

c
o

re
 I

D

QuickSched tiled QR decomposition tasks

0 50 100 150 200 250
0

8

16

24

32

40

48

56

time (ms)

c
o

re
 I

D

OmpSs tiled QR decomposition tasks

Task scheduling in QuickSched (above) and OmpSs (below) for the QR
decomposition of a 20482048 matrix on 64 cores.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 23/27

Software
SWIFT

Close collaboration with the Institute for Computational Cosmology (ICC) at
Durham University.
−→Make sure we’re building a software that can actually be used.
Main goal is to replace GADGET2, the most popular Open-Source cosmological
simulation code.
−→ Is currently 40× faster than GADGET2.
Massively multi-scale problems, with millions to billions of particles, run on
both desktops and supercomputers.
−→ Include support for GPUs in order to take some of the moderate
simulations off the cluster and onto desktop workstations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 24/27

Software
SWIFT

Close collaboration with the Institute for Computational Cosmology (ICC) at
Durham University.
−→Make sure we’re building a software that can actually be used.
Main goal is to replace GADGET2, the most popular Open-Source cosmological
simulation code.
−→ Is currently 40× faster than GADGET2.
Massively multi-scale problems, with millions to billions of particles, run on
both desktops and supercomputers.
−→ Include support for GPUs in order to take some of the moderate
simulations off the cluster and onto desktop workstations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 24/27

Software
SWIFT

Close collaboration with the Institute for Computational Cosmology (ICC) at
Durham University.
−→Make sure we’re building a software that can actually be used.
Main goal is to replace GADGET2, the most popular Open-Source cosmological
simulation code.
−→ Is currently 40× faster than GADGET2.
Massively multi-scale problems, with millions to billions of particles, run on
both desktops and supercomputers.
−→ Include support for GPUs in order to take some of the moderate
simulations off the cluster and onto desktop workstations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 24/27

Software
SWIFT

Close collaboration with the Institute for Computational Cosmology (ICC) at
Durham University.
−→Make sure we’re building a software that can actually be used.
Main goal is to replace GADGET2, the most popular Open-Source cosmological
simulation code.
−→ Is currently 40× faster than GADGET2.
Massively multi-scale problems, with millions to billions of particles, run on
both desktops and supercomputers.
−→ Include support for GPUs in order to take some of the moderate
simulations off the cluster and onto desktop workstations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 24/27

Software
SWIFT

Close collaboration with the Institute for Computational Cosmology (ICC) at
Durham University.
−→Make sure we’re building a software that can actually be used.
Main goal is to replace GADGET2, the most popular Open-Source cosmological
simulation code.
−→ Is currently 40× faster than GADGET2.
Massively multi-scale problems, with millions to billions of particles, run on
both desktops and supercomputers.
−→ Include support for GPUs in order to take some of the moderate
simulations off the cluster and onto desktop workstations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 24/27

Software
SWIFT

Close collaboration with the Institute for Computational Cosmology (ICC) at
Durham University.
−→Make sure we’re building a software that can actually be used.
Main goal is to replace GADGET2, the most popular Open-Source cosmological
simulation code.
−→ Is currently 40× faster than GADGET2.
Massively multi-scale problems, with millions to billions of particles, run on
both desktops and supercomputers.
−→ Include support for GPUs in order to take some of the moderate
simulations off the cluster and onto desktop workstations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 24/27

Software
SWIFT

Close collaboration with the Institute for Computational Cosmology (ICC) at
Durham University.
−→Make sure we’re building a software that can actually be used.
Main goal is to replace GADGET2, the most popular Open-Source cosmological
simulation code.
−→ Is currently 40× faster than GADGET2.
Massively multi-scale problems, with millions to billions of particles, run on
both desktops and supercomputers.
−→ Include support for GPUs in order to take some of the moderate
simulations off the cluster and onto desktop workstations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 24/27

Software
SWIFT

Close collaboration with the Institute for Computational Cosmology (ICC) at
Durham University.
−→Make sure we’re building a software that can actually be used.
Main goal is to replace GADGET2, the most popular Open-Source cosmological
simulation code.
−→ Is currently 40× faster than GADGET2.
Massively multi-scale problems, with millions to billions of particles, run on
both desktops and supercomputers.
−→ Include support for GPUs in order to take some of the moderate
simulations off the cluster and onto desktop workstations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 24/27

Software
SWIFT

Close collaboration with the Institute for Computational Cosmology (ICC) at
Durham University.
−→Make sure we’re building a software that can actually be used.
Main goal is to replace GADGET2, the most popular Open-Source cosmological
simulation code.
−→ Is currently 40× faster than GADGET2.
Massively multi-scale problems, with millions to billions of particles, run on
both desktops and supercomputers.
−→ Include support for GPUs in order to take some of the moderate
simulations off the cluster and onto desktop workstations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 24/27

Software
SWIFT

200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

498ms

20281ms

nr. cores

s
p
e
e
d
u
p

Speedup Cosmological volume

1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

nr. nodes

p
a
ra

lle
l
e
ff
ic

ie
n
c
y

16
32

64 128
256

512

1024

Parallel Efficiency Cosmological volume

SWIFT

Gadget2

51 M particle SPH simulation using SWIFT on 16× 16-core nodes of the
COSMA5 cluster, strong scaling compared to GADGET2.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 25/27

Conclusions
Take-home messages

Task-based parallelism provides good scaling for shared-memory parallel
computations.
More importantly, though, the task/resource decomposition provides an
interesting representation of the computation.
The task-based representation can be used to:

I Compute domain decompositions that split the actual work, not just the data.
I Automatically create asynchronous send/recv tasks for hybrid

shared/distributed-memory parallel computations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 26/27

Conclusions
Take-home messages

Task-based parallelism provides good scaling for shared-memory parallel
computations.
More importantly, though, the task/resource decomposition provides an
interesting representation of the computation.
The task-based representation can be used to:

I Compute domain decompositions that split the actual work, not just the data.
I Automatically create asynchronous send/recv tasks for hybrid

shared/distributed-memory parallel computations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 26/27

Conclusions
Take-home messages

Task-based parallelism provides good scaling for shared-memory parallel
computations.
More importantly, though, the task/resource decomposition provides an
interesting representation of the computation.
The task-based representation can be used to:

I Compute domain decompositions that split the actual work, not just the data.
I Automatically create asynchronous send/recv tasks for hybrid

shared/distributed-memory parallel computations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 26/27

Conclusions
Take-home messages

Task-based parallelism provides good scaling for shared-memory parallel
computations.
More importantly, though, the task/resource decomposition provides an
interesting representation of the computation.
The task-based representation can be used to:

I Compute domain decompositions that split the actual work, not just the data.
I Automatically create asynchronous send/recv tasks for hybrid

shared/distributed-memory parallel computations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 26/27

Conclusions
Take-home messages

Task-based parallelism provides good scaling for shared-memory parallel
computations.
More importantly, though, the task/resource decomposition provides an
interesting representation of the computation.
The task-based representation can be used to:

I Compute domain decompositions that split the actual work, not just the data.
I Automatically create asynchronous send/recv tasks for hybrid

shared/distributed-memory parallel computations.

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 26/27

Conclusions
Thanks

Thank you for your attention!

Pedro Gonnet: Task-based parallelism, and why it is awesome September 16th, 2015 27/27

	Title
	Introduction
	This talk in a nutshell

	Forget what you've learned
	The problem with distributed-memory parallelism
	The problem with OpenMP
	The MPI/OpenMP paradigm is wrong
	In summary

	Task-based parallelism
	Main concepts
	Implementations
	Modelling constraints with resources
	Main advantages

	Task-based algorithms
	Neighbour-finding with trees
	Hierarchical cell pairs
	Task hierarchy
	Task-based parallelism in action

	Hybrid parallelism using tasks
	Distributed-memory parallelism
	Task-based domain decomposition
	Task-based asynchronous communication
	What this looks like in SWIFT
	Forget what you've learned

	Software
	QuickSched
	SWIFT

	Conclusions
	Take-home messages
	Thanks

