
M
it

g
lie

d
 d

e
r

H
e
lm

h
o
lt

z-
G

e
m

e
in

sc
h

a
ft

Performance Tools
Use Case

June 2016 | Ilya Zhukov

I. Zhukov JURECA Porting & Tuning Workshop, June 2016 2

POP CoE

EU H2020 Center of Excellence
– On Performance Optimization and Productivity
– Promoting best practices in performance analysis and parallel

programming

Providing Services
– Precise understanding of application and system behavior
– Suggestion/support on how to refactor code in the most

productive way

Horizontal
– Transversal across application areas, platforms, scales

 For academic AND industrial codes and users!

I. Zhukov JURECA Porting & Tuning Workshop, June 2016 3

Partners

Who?
• BSC (coordinator), ES
• HLRS, DE
• JSC, DE
• NAG, UK
• RWTH Aachen, IT Center, DE
• TERATEC, FR

A team with

• Excellence in performance tools and tuning

• Excellence in programming models and practices

• Research and development background AND
proven commitment in application to real academic and industrial
use cases

I. Zhukov JURECA Porting & Tuning Workshop, June 2016 4

Motivation

Why?

• Complexity of machines and codes

 Frequent lack of quantified understanding of actual behavior

 Not clear most productive direction of code refactoring

• Important to maximize efficiency (performance, power) of
compute intensive applications and the productivity of the
development efforts

Target

• Parallel programs , mainly MPI /OpenMP … although can also
look at CUDA, OpenCL, Python, …

I. Zhukov JURECA Porting & Tuning Workshop, June 2016 5

3 levels of services
? Application Performance Audit

• Primary service

• Identify performance issues of customer code
(at customer site)

• Small Effort (< 1 month)
! Application Performance Plan

• Follow-up on the service

• Identifies the root causes of the issues found
and qualifies and quantifies approaches to
address the issues

• Longer effort (1-3 months)
 Proof-of-Concept

• Experiments and mock-up tests for customer
codes

• Kernel extraction, parallelization, mini-apps
experiments to show effect of proposed
optimizations

• 6 months effort

R
e

po
rt s

S
oftw

a re

dem
o

n strato
r

Apply @
http://www.pop-coe.eu

I. Zhukov JURECA Porting & Tuning Workshop, June 2016 6

What to analyze:
- ParFlow parallel, three-dimensional, variably saturated

 groundwater flow code
- MPI
- Fortran and C
- weak scaling testcase

Where: Juqueen
What is the problem:

- Scalability?
- Memory?

Tools for analysis:
- Score-P 1.4.2 and 2.0.1
- Scalasca 2.2.1
- PAPI 5.3.0

Performance audit of ParFlow

I. Zhukov JURECA Porting & Tuning Workshop, June 2016 7

solve()
{
 init_solver();
 for(i=0; i < num_timesteps; i++)
 {
 init_problem();
 solver_loop()
 {
 while(residual > tol)
 {
 nonlinear_iterative_solver();
 }
 }
 }
}

Syntactic structure Approximate percentage
of total execution time (1024 MPI processes)

Part of application
Percentage of total execution time, %

Computation
MPI communication operations

Rest of MPI
Point-to-point collective

init_solver 19 0 4 0
init problem 8 0 7 0
solver loop 31 20 3 3
Rest of the application 1 4 0 0
Application in total 59 24 14 3

Behavior and Structure

I. Zhukov JURECA Porting & Tuning Workshop, June 2016 8

Total execution time Average time of specific
regions

Scalability

I. Zhukov JURECA Porting & Tuning Workshop, June 2016 9

Efficiency metric
Part of application

Application in total init_solver init_problem solver loop
Load balance (avg/max) 0.99 0.99 0.83 0.96
Serialization 0.72 0.83 0.51 0.76
Transfer 0.9 0.99 0.99 0.88
Communication efficiency 0.65 0.82 0.51 0.67
Parallel efficiency 0.64 0.81 0.42 0.64

- Parallel efficiency metrics based on time
- Values from 0 to 1 (the higher the better)

Efficiency

I. Zhukov JURECA Porting & Tuning Workshop, June 2016 10

Total MPI time
Wait-state analysis:
- Late Sender (14.6% of total time)
- Wait NxN (13.19% of total time)

Root cause analysis:
- init_solver
- solver_loop
- GetGridNeighbors

Delay analysis:
- init_solver
- solver_loop
- GetGridNeighbors
- PFMG

Communication

I. Zhukov JURECA Porting & Tuning Workshop, June 2016 11

Observations:
 - Provided testcase is certainly communication bound.
 - Waiting time is dominating in communication.
 - Most of the waiting time is spent in "Late Sender" and "Wait at NxN"
 wait-state patterns.
 - Application has load imbalance.
 - Some memory leaks were detected.

Recommendations:
 - Try to avoid logging and intermediate flushes.
 - To remove "Late Sender" and "Wait at NxN" wait-states

examine/refactor following routines: init_solver, solver_loop, PFMG
and GetGridNeighbors

 - Verify if it is really necessary to call MPI_Comm_rank so often.
 - Examine NewGrid for memory leaks.

Audit Summary

	Slide 1
	Slide 2
	Partners
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

