
M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Parallel I/O
I/O strategies
Wolfgang Frings, Sebastian Lührs
w.frings@fz-juelich.de
Jülich Supercomputing Centre
Forschungszentrum Jülich GmbH

Jülich, June 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

June 7th, 2016 Parallel I/O 2

Outline

 Common I/O strategies
 I/O workflow
 Pitfalls
 Parallel I/O software stack
 I/O on Jureca
 Application I/O performance information

with Darshan

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

One process performs I/O

+ Simple to implement

- I/O bandwidth is
limited to the rate
of this single process

- Additional
communication might
be necessary

- Other processes may idle and waste computing
resources during I/O time

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

Parallel I/O 3June 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

June 7th, 2016 Parallel I/O 4

Frequent flushing on small blocks

 Modern file systems in HPC have large file
system blocks (e.g. 4MB)

 A flush on a file handle forces the file system to
perform all pending write operations

 If application writes in small data blocks, the same
file system block it has to be read and written
multiple times

 Performance degradation due to the inability to
combine several write calls

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

5

Task-local files

Parallel I/OJune 7th, 2016

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

+ Simple to implement
+ No coordination

between processes
needed

+ No false sharing of
file system blocks

- Number of files
quickly becomes
unmanageable

- Files often need to be merged to create a
canonical dataset

- File system might serialize meta data modification

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

~ 13 min

JUQUEEN: 0.5-28 racks, 64 tasks/node

6

Serialization of meta data modification

The creation of 1.8 M files costs 99.116 core hours!

Example: Creating files in parallel in the same directory

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

7

Shared files

Parallel I/OJune 7th, 2016

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

+ Number of files is
independent of
number of processes

+ File can be in
canonical
representation
(no post-processing)

- Uncoordinated client requests might induce time
penalties

- File layout may induce false sharing of file system
blocks

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

8

False sharing of file system blocks

 Data blocks of individual processes do not fill up a
complete file system block

 Several processes share a file system block
 Exclusive access (e.g. write) must be serialized
 The more processes have to synchronize the more

waiting time will propagate

file system block

data block free file system block

FS Block FS Block FS Block

data
task 1

data
task 2

… …
lock

t1 t2
lock

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

9

Number of Tasks per Shared File

Meta-data wall on file level
 File meta-data management
 Locking
Example Blue Gene/Q
 I/O forwarding nodes (ION)
 GPFS client on ION, one file per ION

file i-node
indirect
blocksI/O-

client

FS blocks

SIONlib multi-files

Task-local files

SIONlib one shared file

JUQUEEN: 1 rack, 4-64 tasks/node
8 I/O nodes, 512 MiB/node

incl. time for open/close

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

10

I/O Workflow

 Post processing can be very time-consuming (> data creation)
 Widely used portable data formats avoid post processing

 Data transportation time can be long:
 Use shared file system for file access, avoid raw data

transport
 Avoid renaming/moving of big files (can block backup)

data creation

data post processing
(merge files, switch to
different file format) visualization

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

11

Portability

 Endianness (byte order) of binary data

2,712,847,316
=

10100001 10110010 11000011 11010100

Address Little Endian Big Endian
1000 11010100 10100001
1001 11000011 10110010
1002 10110010 11000011
1003 10100001 11010100

 Conversion of files might be necessary and expensive

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

12

Portability

 Memory order depends on programming language

Address row-major order
(e.g. C/C++)

column-major order
(e.g. Fortran)

1000 1 1
1001 2 4
1002 3 7
1003 4 2
1004 5 5

… … …

1 2 3
4 5 6
7 8 9

 Transpose of array might be necessary when using different
programming languages in the same workflow

 Solution: Choosing a portable data format (HDF5, NetCDF)

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

13

How to choose the I/O strategy?

 Performance considerations
 Amount of data
 Frequency of reading/writing
 Scalability

 Portability
 Different HPC architectures
 Data exchange with others
 Long-term storage

 E.g. use two formats and converters:
 Internal: Write/read data “as-is”

 Restart/checkpoint files
 External: Write/read data in non-decomposed format

(portable, system-independent, self-describing)
Workflows, Pre-, Post-processing, Data exchange

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

14

Parallel I/O Software Stack

Parallel application

Parallel file system

POSIX I/O

P-HDF5

MPI-I/O

PNetCDF …

…

Sh
ar

ed

fil
e

Task-
local
files

…

NetCDF-4

SIONlib

data stored in global view in local view

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

June 7th, 2016 Parallel I/O 15

Jureca: I/O infrastructure
• Overall bandwidth: > 100 GB/s

• Max. I/O bandwidth / node
Write 5.4 GB/s
Read 2.1 GB/s
(current measurements)

• Nodes share links to
gateway switches varying
bandwidth/node depending
on overall system I/O load

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

16

Darshan: Usage example on JURECA

 Load module
 module load intel-para darshan-runtime

 Tell srun to use Darshan (in submit script)
 LD_PRELOAD=$EBROOTDARSHANMINRUNTIME/lib/libdarshan.so \

DARSHAN_LOG_PATH=/path/to/your/logdir \
srun -n 32 ./executable

 Analyse output
 module load intel-para darshan-util
 darshan-job-summary.pl mylog.darshan.gz
 evince mylog.pdf

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

17

Darshan: Interpret the summary

 Average and statistical
information on I/O patterns

 Relative time for I/O
 Most common access sizes

 Additional metrics
 File count
 I/O size histogram
 Timeline for read / write per

task
 …

Parallel I/OJune 7th, 2016

	Parallel I/O�
	Outline
	One process performs I/O
	Frequent flushing on small blocks
	Task-local files�
	Serialization of meta data modification
	Shared files�
	False sharing of file system blocks
	Number of Tasks per Shared File�
	I/O Workflow
	Portability
	Portability
	How to choose the I/O strategy?
	Parallel I/O Software Stack
	Jureca: I/O infrastructure
	Darshan: Usage example on JURECA
	Darshan: Interpret the summary

