Member of the Helmholtz-Association

Parallel I/O

/O strategies

Wolfgang Frings, Sebastian Lihrs
w.frings@fz-juelich.de

Jilich Supercomputing Centre
Forschungszentrum Jilich GmbH

Julich, June 7, 2016

#) 0LICH

FORSCHUNGSZENTRUM

Member of the Helmholtz-Association

Outline

= Common |I/O strategies

= |/O workflow

= Pitfalls

= Parallel /O software stack
= |/O on Jureca

= Application I/O performance information
with Darshan

June 7th, 2016 Parallel I/O

#) J0LICH

FORSCHUNGSZENTRUM

Member of the Helmholtz-Association

One process performs /O

+ Simple to implement

- 1/0 bandwidth is
limited to the rate
of this single process

- Additional
communication might
be necessary

#) J0LICH

FORSCHUNGSZENTRUM

file system

FZS. N N\

PO1 {| PO2 || PO3

PO5 || PO6 || POY

PO9 || P10 || P11

P12 || P13 || P14 || P15

processes

- Other processes may idle and waste computing
resources during I/O time

June 7th, 2016

Parallel I/O

Member of the Helmholtz-Association

. #) JULICH
Frequent flushing on small blocks

= Modern file systems in HPC have large file
system blocks (e.g. 4AMB)

= Aflush on a file handle forces the file system to
perform all pending write operations

= |f application writes in small data blocks, the same
file system block it has to be read and written
multiple times

= Performance degradation due to the inability to
combine several write calls

June 7th, 2016 Parallel I/O 4

ciation

Member of the Helmholtz-Asso

Task-local files

#) J0LICH

FORSCHUNGSZENTRUM

+ Simple to implement

+ No coordination POO 1 PO1 11 PO2 1 PO3
N 7
between processes | f—= 4
et || PO5 || PO6 || PO7
needed o—
+ No false sharing of B Pog || Po9 || P10 || P11
file system blocks &
. e @ P12 || P13 || P14 || P15
- Number of files e SYSET
processes

quickly becomes

unmanageable

- Files often need to be merged to create a
canonical dataset

- File system might serialize meta data modification

June 7th, 2016 Parallel I/O

Member of the Helmholtz-Association

Serialization of meta data modification

Example: Creating files in parallel in the same directory

Create time [s]

#) J0LICH

FORSCHUNGSZENTRUM

1000 |
=@-Task-local file create ~ 13 min
100
73.8
o 347
26.9
24.8
10 —
32,768 131,072 524,288 1.835.008 2,097,152
Tasks (28 racks)

JUQUEEN: 0.5-28 racks, 64 tasks/node

June 7th, 2016

The creation of 1.8 M files costs 99.116 core hours!

Parallel I/O

ciation

Member of the Helmholtz-Asso

Shared files

+ Number of files is
iIndependent of
number of processes

+ File can be In
canonical
representation
(no post-processing)

#) J0LICH

FORSCHUNGSZENTRUM

POO || PO1 || PO2 || PO3
- T 7 7
1P PO POSA1PO7
PO8 || P09 || P10 || P11
S
file system P12 || P13 || P14 || P15
processes

- Uncoordinated client requests might induce time

penalties

- File layout may induce false sharing of file system

blocks

June 7th, 2016

Parallel I/O

#) J0LICH

False sharing of file system blocks
data block free file system block

-:l FS Block FS Block

data data
file system block task 1 task 2

Data blocks of individual processes do not fill up a
complete file system block

= Several processes share a file system block
= EXxclusive access (e.g. write) must be serialized

= The more processes have to synchronize the more
waiting time will propagate

c
8
=1
R
o
o
1]
9]
<
N
=
S
<
£
]
T
)
<
=]
b
S
Ny
<
Q
£
(o]
=

June 7th, 2016 Parallel I/O 8

Member of the Helmholtz-Association

. #) JULICH
Number of Tasks per Shared File

Meta-data wall on file level
* File meta-data management

u LOCklng indirect

FS blocks
=]/O forwarding nodes (ION)
= GPFS client on ION, one file per ION
18,000
=@=Task-local files (Write)
16,000 | =s=Shared-file (Write) . . o
14.000 4L —®=SIONIib multi-files (Write) /,S|ON||b multi-files
~ 12,000 —e
o
S 10,000 _~Task-local files
£ 8000 s
3 6,000 2 SIONlib one shared file
& 4,000 ,,"
\ ’
2,000 ‘T‘ /7 incl. time for open/close
0 - - — JUQUEEN: 1 rack, 4-64 tasks/node
4,096 8,192 16,384 32,768 65,536 8 1/0 nodes, 512 MiB/node
Tasks

June 7th, 2016 Parallel I/O 9

#) 0LICH
/0 Workflow < JuLICcH

A\ 4

/

data post processing I —

(merge files, switch to < ualizafi
different file format) visualization

data creation U

= Post processing can be very time-consuming (> data creation)

= Widely used portable data formats avoid post processing
= Data transportation time can be long:

= Use shared file system for file access, avoid raw data
transport

= Avoid renaming/moving of big files (can block backup)

Member of the Helmholtz-Association

June 7th, 2016 Parallel I/O 10

#) 0LICH
Portability < 1oLt

= Endianness (byte order) of binary data

2,712,847,316

10100001 10110010 11000011

Address Little Endian Big Endian
1000 10100001
1001 11000011 10110010
1002 10110010 11000011
1003 10100001

= Conversion of files might be necessary and expensive

Member of the Helmholtz-Association

June 7th, 2016 Parallel I/O 11

Member of the Helmholtz-Association

#) 0LICH
Portability < 1oLt

= Memory order depends on programming language

Address row-major order column-major order

(e.g. C/IC++) (e.g. Fortran)
1 2 3 1000 1 1
1001 2 4
5 6 —
1002 3 7
71819 1003 4 2
1004 5 5

= Transpose of array might be necessary when using different
programming languages in the same workflow

= Solution: Choosing a portable data format (HDF5, NetCDF)

June 7th, 2016 Parallel I/O 12

ciation

Member of the Helmholtz-Asso

How to choose the I/O strategy?

= Performance considerations
= Amount of data
= Frequency of reading/writing
= Scalability
= Portability
= Different HPC architectures
= Data exchange with others
= Long-term storage
= E.g. use two formats and converters:

= |[nternal: Write/read data “as-is”
—> Restart/checkpoint files

= External: Write/read data in non-decomposed format
(portable, system-independent, self-describing)

#) J0LICH

FORSCHUNGSZENTRUM

- Workflows, Pre-, Post-processing, Data exchange

June 7th, 2016 Parallel I/O

13

#))OLICH
Parallel 1/0 Software Stack

Parallel application

Lo

P-HDF5 @8 NetCDF-4 HW); PNetCDF

/]]

T [1-1 |5
Parallel file system

data stored in global view in local view

files

file

iation

Member of the Helmholtz-Assoc

June 7th, 2016 Parallel I/0O 14

. #) JULICH
Jureca: I/O infrastructure

e Overall bandwidth: > 100 GB/s

 Max. I/O bandwidth / node
Write = 5.4 GB/s
Read -2 2.1 GB/s
(current measurements)

e Nodes share links to
gateway switches - varying
bandwidth/node depending
on overall system I/O load

Full fal tree
EDR-IB

6§ ADGE-LAGS™
46240GE, N
2.8 TBivsec aggregated

% / -
about 1900 nodes with EDR-HCA altemately . , N 2 o B4 Storage-Server
belonging to one of the thiee IP-networks/pkeys . N !

Member of the Helmholtz-Association

June 7th, 2016 Parallel I/0O 15

Member of the Helmholtz-Association

o

Darshan: Usage example on JURECA

= Load module
= module load intel-para darshan-runtime

= Tell srun to use Darshan (in submit script)

LD_PRELOAD=$EBROOTDARSHANMINRUNTIME/lib/libdarshan.so \
DARSHAN_LOG_PATH=/path/to/your/logdir \
srun -n 32 _./executable

= Analyse output
= module load intel-para darshan-util
= darshan-job-summary.pl mylog.darshan.gz
= evince mylog.pdf

June 7th, 2016 Parallel I/O

JULICH

FORSCHUNGSZENTRUM

16

#) J0LICH
Darshan: Interpret the summary

Average /O cost per process

= Average and statistical 100 -
information on 1/O patterns o |

= Relative time for I/O
= Most common access sizes

= Additional metrics
= File count
= 1/O size histogram

- . . A
= Timeline for read / write per A
taSk Read s

Write ===
Metadata
Other (including application compute)

Percentage of run time

Most Common Access Sizes
access size count

4194304 256

Member of the Helmholtz-Association

June 7th, 2016 Parallel I/0O 17

	Parallel I/O�
	Outline
	One process performs I/O
	Frequent flushing on small blocks
	Task-local files�
	Serialization of meta data modification
	Shared files�
	False sharing of file system blocks
	Number of Tasks per Shared File�
	I/O Workflow
	Portability
	Portability
	How to choose the I/O strategy?
	Parallel I/O Software Stack
	Jureca: I/O infrastructure
	Darshan: Usage example on JURECA
	Darshan: Interpret the summary

