
M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Parallel I/O
I/O strategies
Wolfgang Frings, Sebastian Lührs
w.frings@fz-juelich.de
Jülich Supercomputing Centre
Forschungszentrum Jülich GmbH

Jülich, June 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

June 7th, 2016 Parallel I/O 2

Outline

 Common I/O strategies
 I/O workflow
 Pitfalls
 Parallel I/O software stack
 I/O on Jureca
 Application I/O performance information

with Darshan

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

One process performs I/O

+ Simple to implement

- I/O bandwidth is
limited to the rate
of this single process

- Additional
communication might
be necessary

- Other processes may idle and waste computing
resources during I/O time

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

Parallel I/O 3June 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

June 7th, 2016 Parallel I/O 4

Frequent flushing on small blocks

 Modern file systems in HPC have large file
system blocks (e.g. 4MB)

 A flush on a file handle forces the file system to
perform all pending write operations

 If application writes in small data blocks, the same
file system block it has to be read and written
multiple times

 Performance degradation due to the inability to
combine several write calls

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

5

Task-local files

Parallel I/OJune 7th, 2016

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

+ Simple to implement
+ No coordination

between processes
needed

+ No false sharing of
file system blocks

- Number of files
quickly becomes
unmanageable

- Files often need to be merged to create a
canonical dataset

- File system might serialize meta data modification

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

~ 13 min

JUQUEEN: 0.5-28 racks, 64 tasks/node

6

Serialization of meta data modification

The creation of 1.8 M files costs 99.116 core hours!

Example: Creating files in parallel in the same directory

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

7

Shared files

Parallel I/OJune 7th, 2016

P00 P01 P02 P03

P04 P05 P06 P07

P08 P09 P10 P11

P12 P13 P14 P15

processes

file system

+ Number of files is
independent of
number of processes

+ File can be in
canonical
representation
(no post-processing)

- Uncoordinated client requests might induce time
penalties

- File layout may induce false sharing of file system
blocks

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

8

False sharing of file system blocks

 Data blocks of individual processes do not fill up a
complete file system block

 Several processes share a file system block
 Exclusive access (e.g. write) must be serialized
 The more processes have to synchronize the more

waiting time will propagate

file system block

data block free file system block

FS Block FS Block FS Block

data
task 1

data
task 2

… …
lock

t1 t2
lock

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

9

Number of Tasks per Shared File

Meta-data wall on file level
 File meta-data management
 Locking
Example Blue Gene/Q
 I/O forwarding nodes (ION)
 GPFS client on ION, one file per ION

file i-node
indirect
blocksI/O-

client

FS blocks

SIONlib multi-files

Task-local files

SIONlib one shared file

JUQUEEN: 1 rack, 4-64 tasks/node
8 I/O nodes, 512 MiB/node

incl. time for open/close

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

10

I/O Workflow

 Post processing can be very time-consuming (> data creation)
 Widely used portable data formats avoid post processing

 Data transportation time can be long:
 Use shared file system for file access, avoid raw data

transport
 Avoid renaming/moving of big files (can block backup)

data creation

data post processing
(merge files, switch to
different file format) visualization

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

11

Portability

 Endianness (byte order) of binary data

2,712,847,316
=

10100001 10110010 11000011 11010100

Address Little Endian Big Endian
1000 11010100 10100001
1001 11000011 10110010
1002 10110010 11000011
1003 10100001 11010100

 Conversion of files might be necessary and expensive

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

12

Portability

 Memory order depends on programming language

Address row-major order
(e.g. C/C++)

column-major order
(e.g. Fortran)

1000 1 1
1001 2 4
1002 3 7
1003 4 2
1004 5 5

… … …

1 2 3
4 5 6
7 8 9

 Transpose of array might be necessary when using different
programming languages in the same workflow

 Solution: Choosing a portable data format (HDF5, NetCDF)

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

13

How to choose the I/O strategy?

 Performance considerations
 Amount of data
 Frequency of reading/writing
 Scalability

 Portability
 Different HPC architectures
 Data exchange with others
 Long-term storage

 E.g. use two formats and converters:
 Internal: Write/read data “as-is”

 Restart/checkpoint files
 External: Write/read data in non-decomposed format

(portable, system-independent, self-describing)
Workflows, Pre-, Post-processing, Data exchange

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

14

Parallel I/O Software Stack

Parallel application

Parallel file system

POSIX I/O

P-HDF5

MPI-I/O

PNetCDF …

…

Sh
ar

ed

fil
e

Task-
local
files

…

NetCDF-4

SIONlib

data stored in global view in local view

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

June 7th, 2016 Parallel I/O 15

Jureca: I/O infrastructure
• Overall bandwidth: > 100 GB/s

• Max. I/O bandwidth / node
Write  5.4 GB/s
Read  2.1 GB/s
(current measurements)

• Nodes share links to
gateway switches  varying
bandwidth/node depending
on overall system I/O load

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

16

Darshan: Usage example on JURECA

 Load module
 module load intel-para darshan-runtime

 Tell srun to use Darshan (in submit script)
 LD_PRELOAD=$EBROOTDARSHANMINRUNTIME/lib/libdarshan.so \

DARSHAN_LOG_PATH=/path/to/your/logdir \
srun -n 32 ./executable

 Analyse output
 module load intel-para darshan-util
 darshan-job-summary.pl mylog.darshan.gz
 evince mylog.pdf

Parallel I/OJune 7th, 2016

M
em

be
r o

f t
he

 H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

17

Darshan: Interpret the summary

 Average and statistical
information on I/O patterns

 Relative time for I/O
 Most common access sizes

 Additional metrics
 File count
 I/O size histogram
 Timeline for read / write per

task
 …

Parallel I/OJune 7th, 2016

	Parallel I/O�
	Outline
	One process performs I/O
	Frequent flushing on small blocks
	Task-local files�
	Serialization of meta data modification
	Shared files�
	False sharing of file system blocks
	Number of Tasks per Shared File�
	I/O Workflow
	Portability
	Portability
	How to choose the I/O strategy?
	Parallel I/O Software Stack
	Jureca: I/O infrastructure
	Darshan: Usage example on JURECA
	Darshan: Interpret the summary

