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Parallel and Scalable Machine Learning on JURECA

1. Some pattern exists
2. No exact mathematical formula
3. Data exists

Idea ‘Learning from Data‘ shared with 
a wide variety of other disciplines
 E.g. signal processing, etc.

Using HPC resources like JURECA useful
 Reasoning: parallel I/O, mature inter-process 

communication (MPI), OpenMP, GPGPUs, etc. 

Learning from Data – Different to Simulation Science

Data
Mining
Data

Mining
Applied

Statistics
Applied

Statistics
Data 

Science
Data 

Science

Machine 
Learning
Machine 
Learning Statistical data mining and machine learning is a 

very broad subject and goes from very abstract 
theory to extreme practice (‘rules of thumb’)
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Context Juelich Supercomputing Centre

Federated Data 
Management,
Preservation, 

Security & Access

Big
Data

 Research data-intensive science 
and engineering applications

 Explore computing that is more 
intertwined with data analysis

 Tackle 
Inverse 
Problems

 Sharing, 
re-use, towards 
reproducability
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[8] Th. Lippert, D. Mallmann, M. Riedel, ‘Scientific Big 
Data Analytics by HPC’, Publication Series of the John 
von Neumann Institute for Computing (NIC) NIC Series 
48, 417, ISBN 978-3-95806-109-5, pp. 1 - 10, 2016
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Parallelization Demand

Serial data analysis techniques/tools increasingly show limits
 Traditional methods still relevant, but need to scale for ‘big data‘
 Big Data: e.g. high number of dimensions/classes or ‘data points‘

Classification++

Regression++

Clustering++

 Concrete ‘big data‘: 
large earth science data

 Concrete ‘big data‘: 
large health data
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Clustering Technique

 Groups of data exist
 New data classified 

to existing groups

Classification
?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data
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Selected Clustering Methods 

K-Means Clustering – Centroid based clustering
 Partitions a data set into K distinct clusters (centroids can be artificial)

K-Medoids Clustering – Centroid based clustering (variation)
 Partitions a data set into K distinct clusters (centroids are actual points)

Sequential Agglomerative hierarchic nonoverlapping (SAHN)
 Hiearchical Clustering (create tree-like data structure  ‘dendrogram’)

Clustering Using Representatives (CURE)
 Select representative points / cluster; as far from one another as possible

Density-based spatial clustering of applications + noise 
(DBSCAN)
 Assumes clusters of similar density or areas of higher density in dataset

Reasoning: density similiarity measure helpful in our driving applications
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Technology Review of Available ‘Big Data ‘Tools

[1] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering 
Techniques for Earth Science Datasets’, 6th Workshop on Data Mining in Earth System 
Science, International Conference of Computational Science, 2015
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 JSC courses 'parallel programming‘ useful: Introduction to parallel programming 
with MPI and OpenMP, Advanced parallel programming with MPI and OpenMP
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DBSCAN

DBSCAN Algorithm
 Introduced 1996 by Martin Ester et al.
 Groups number of similar points into clusters of data
 Similarity is defined by a distance measure (e.g. euclidean distance)

Distinct Algorithm Features
 Clusters a variable number of clusters
 Forms arbitrarily shaped clusters
 Identifies outliers/noise

Understanding Parameters for MPI/OpenMP tool
 Looks for a similar points within a given search radius 
 Parameter epsilon
 A cluster consist of a given minimum number of points 
 Parameter minPoints

Unclustered
Data

Clustered
Data

[2] Ester et al.

[3] M.Goetz & C. Bodenstein, HPDBSCAN Tool
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Parallel & Scalable HP-DBSCAN Tool on JURECA (1)

Parallelization Strategy
 Smart ‘Big Data‘ Preprocessing 

into Spatial Cells (‘indexed‘)
 OpenMP standalone 
 MPI (+ optional OpenMP hybrid)

Preprocessing Step
 Spatial indexing and redistribution 

according to the point localities
 Data density based chunking of 

computations

Computational Optimizations
 Caching of point neighborhood searches
 Cluster merging based on comparisons instead of zone reclustering

[4] M.Goetz, M. Riedel et al., ‘HPDBSCAN – Highly 
Parallel DBSCAN’,  MLHPC Workshop at 
Supercomputing 2015

#
ε
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Parallel & Scalable HP-DBSCAN Tool on JURECA (2)

Usage via jobscript
 Using job scheduler
 Important: module load hdf5/1.8.13
 Important: library gcc-4.9.2/lib64 
 np = number of processors
 t = number of threads
 Uses parallel/IO

JURECA @ Juelich

DBSCAN 
Parameters
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 JSC courses ‘Parallel I/O‘ useful: Parallel I/O and portable data formats
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Clustering Applications – Large Point Clouds

‘Big Data‘: 3D/4D laser scans
 Captured by robots or drones
 Millions to billion entries
 Inner cities (e.g. Bremen inner city)
 Whole countries (e.g. Netherlands)

Selected Scientific Cases
 Filter noise to better represent real data
 Grouping of objects (e.g. buildings)
 Different level of details (e.g. trees)

 Research activities in collaboration with the Netherlands e-Science Centre & TU Delft
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Clustering Applications – Many Time Series & Events

Earth Science Data Repository
 Time series measurements (e.g. salinity)
 Millions to billions of data items/locations
 Less capacity of experts to analyse data

Selected Scientific Case
 Data from Koljöfjords in Sweden (Skagerrak)
 Each measurement small data, but whole sets are ‘big data‘
 Automated water mixing event detection & quality control (e.g. biofouling)
 Verification through domain experts

 Research activities in collaboration with MARUM in Bremen and University of Gothenburg
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Clustering Applications – Neuro Science Image Analysis

Large Brain Images
 High resolution scans of post mortem brains
 Rare ‘groundtruth available‘

Selected Scientific Case
 Cell nuclei detection and tissue clustering
 Detect various layers (colored)
 Layers seem to have different density distribution of cells
 Extract cell nuclei into 2D/3D point cloud
 Cluster different brain areas by cell density #

 Research activities in collaboration with Institute of Medicine and Neuroscience (T. Dickscheid)
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Classification Technique

 Groups of data exist
 New data classified 

to existing groups

Classification
?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

14 / 27



Parallel and Scalable Machine Learning on JURECA

Selected Classification Methods 

Perceptron Learning Algorithm – simple linear classification
 Enables binary classification with ‘a line‘ between classes of seperable data 

Support Vector Machines (SVMs) – non-linear (‘kernel‘) classification
 Enables non-linear classification with maximum margin (best ‘out-of-the-box‘)

Decision Trees & Ensemble Methods – tree-based classification
 Grows trees for class decisions, ensemble methods average n trees

Artificial Neural Networks (ANNs) – brain-inspired classification
 Combine multiple linear perceptrons to a strong network for non-linear tasks

Naive Bayes Classifier – probabilistic classification
 Use of the Bayes theorem with strong/naive independence between features

Reasoning: achieves often better results than other methods in tackled application domain
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Technology Review of Available ‘Big Data ‘Tools

[1] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering Techniques for Earth Science 
Datasets’, 6th Workshop on Data Mining in Earth System Science, International Conference of Computational Science
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 JSC courses 'GPU programming‘ useful: Vectorisation and portable programming 
using OpenCL, GPU programming with OpenACC, GPU programming with CUDA
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SVMs

SVM Algorithm
 Introduced 1995 by C.Cortes & V. Vapnik et al.
 Creates a ‘maximal margin classifier‘ to get future points 

(‘more often‘) right and take advantage of kernel methods
 Uses quadratic programming & Lagrangian method with N x N

[5] C. Cortes and V. Vapnik et al.

(maximizing hyperplane turned
into optimization problem,
minimization, allow some errors)

(max. hyperplane  dual problem,
using quadratic programming method,
e.g. sequential minimal optimization) (kernel trick, quadratic coefficients – Computational Complexity & Big Data Impact)

(linear example) (‘maximal margin clasifier‘ example)

(use of soft-margin approach 
for better generalization )
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Parallel & Scalable piSVM Tool on JURECA (1)

Original parallel piSVM tool 1.2
 Open-source and based on libSVM library, C, 2011
 Message Passing Interface (MPI)
 New version appeared 2014-10 v. 1.3 (no major improvements)
 Lack of ‘big data‘ support (memory, layout, etc.)

Tuned scalable parallel piSVM tool 1.2.1
 Highly scalable version maintained by Juelich
 Based on original piSVM 1.2 tool
 Open-source (repository to be created)
 Optimizations: load balancing; MPI collectives

[6] piSVM Website, 2011/2014 code
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Usage via jobscript
 Using job scheduler
 np = number of processors; 
 o/q = problem partitioning
 c = cost (soft margin SVM)
 g = RBF kernel parameter
 T = type of SVM (here C-SVC)
 Example: train phase submit

Parallel & Scalable piSVM Tool on JURECA (2)

SVM 
Parameters

JURECA @ Juelich
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 Submission of test phase similar but using labelled dataset + trained SVM model



Parallel and Scalable Machine Learning on JURECA

Classification Applications – Remote Sensing Images

Challenges: high number of classes, less samples, mixed pixels

challenges in automation

remote sensing cube & ground reference

[7] G. Cavallaro, M. Riedel, 
J.A. Benediktsson et al., 
Journal of Selected Topics in 
Applied Earth Observation and 
Remote Sensing, 2015

(1) Scenario ‘unprocessed data‘
(2) Scenario ‘preprocessed data‘
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Key importance
 Use feature extraction/enhancement
 Apply dimensionality reduction techniques (e.g. principle components)

Example: Self-Dual Attribute Profile (SDAP)
 Use different filtering strategies for 

morphological attributes as additional inputs
 Sequentially apply attribute filters

on tree-based image representations

Classification Applications – SDAP Feature Extraction

 Research activities in collaboration with University of Iceland (G. Cavallaro, J.A. Benediktsson)

[7] G. Cavallaro, M. Riedel, J.A. Benediktsson 
et al., Journal of Selected Topics in Applied 
Earth Observation and Remote Sensing, 2015
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Classification Applications – Lower time to Solution

Example dataset: high number of classes & mixed pixels
 Parallelization benefits: major speed-ups, ~interactive (<1 min) possible

(1) Scenario 
‘unprocessed data‘
training time (in min)

(1) Scenario 
‘unprocessed data‘
testing time (in min)

‘big data‘ is not always better data

manual & serial activities (in min)

[7] G. Cavallaro, M. Riedel, J.A. Benediktsson 
et al., Journal of Selected Topics in Applied 
Earth Observation and Remote Sensing, 2015

(2) Scenario 
‘pre-processed data‘
training time (in min)

(2) Scenario 
‘pre-processed data‘
testing time (in min)
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Classification Applications – Cross-Validation Benefits

2x benefits of parallelization (shown in n-fold cross validation)
 (1) Compute parallel; (2) Do all cross-validation runs in parallel (all cells)
 Evaluation between Matlab (aka ‘serial laptop‘) & parallel piSVM (80 cores)
 10x cross-validation (RBF kernel parameter γ and C, aka ‘gridsearch‘)

[7] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., Journal of Selected 
Topics in Applied Earth Observation and Remote Sensing, 2015

(1) Scenario ‘unprocessed data‘, 10xCV serial: accuracy (min)

(1) Scenario ‘unprocessed data‘’10xCV parallel: accuracy (min)

First Result: best parameter set from 118.28 min to 4.09 min
Second Result: all parameter sets from ~3 days to ~2 hours

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

(2) Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min
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Summary

Scientific Peer Review is essential to progress in the field
 Work in the field needs to be guided & steered by communities
 NIC Scientific Big Data Analytics (SBDA) first step (learn from HPC)
 Towards enabling reproducability by uploading runs and datasets

Selected SBDA by HPC benefit from parallelization
 Statistical data mining techniques able to reduce ‘big data‘ (e.g. PCA, etc.)
 Benefits in n-fold cross-validation & raw data, less on preprocessed data
 Two codes available to use and maintained @JSC: HPDBSCAN, piSVM
 HPDBSCAN and piSVM work on JURECA (less useful on JUQUEEN)

Number of ‘Data Analytics et al.‘ technologies incredible high
 (Less) open source & working versions available, often paper studies
 Evaluating approaches hard: HPC, map-reduce, Spark, SciDB, MaTex, …
 Collection of codes in Juelich Machine Learning Library (JUML) started…
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Thanks
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Talk soon available at: www.morrisriedel.de/talks


