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USC-Lockheed Martin Quantum Computation Center

• (May 2011) D-Wave Systems announced sale of first 128-

qubit D-Wave One™ to Lockheed Martin.

• (Oct 2011) USC-Lockheed Martin Quantum Computing 

Center unveiled at USC Information Sciences Institute, 

Marina del Rey, CA.

• (Mar 2013) System upgraded to 512-qubit D-Wave Two™ 

(“Vesuvius”) chip.

© Copyright 2012-2013 D-Wave Systems Inc. 

© Copyright 2012-2013 D-Wave Systems Inc. 

• (Mar 2016) System upgraded to 1152-qubit D-Wave 2X™ 

(“Washington”) chip. 
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 Purpose

− To reduce V&V cost by 40% and critical 

path length by 50% for existing systems 

Goal 

− To develop enabling system-level V&V 

processes and tools that will generate 

probabilistic measures of correctness for 

large-scale cyber-physical systems 

 Approach

− Employ the D-Wave Two™ to demonstrate 

the utility of the process on a representative 

cyber-physical system

Software Verification & Validation (V&V)
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Value of Studying Near-Term Applications

• Enables business stakeholders to better understand future potential 

of quantum computing technology

 Near-term “waypoints” may help maintain support for overall field

• Helps to identify and prioritize future hardware improvements:

 Qubit connectivity

 Control precision

 Processor noise

 Error correction

 Non-stoquastic Hamiltonians

 Etc

• Advances understanding of how different problem types scale:

 Qubit resource requirements

 Performance
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Pragmatic Expectations for Quantum Computing

• Don’t expect Quantum Computing to replace HPC

 Envision a future hybrid quantum-classical computing architecture

 Quantum computing complements HPC

 Quantum “co-processor” for solving computationally complex sub-problems

• Exponential speedup not required

 Better exponential scaling can have tremendous practical benefit

• Quantum vs. classical benchmarking is a win-win
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Near-Term Applications Lessons Learned

• Focus on applications that “fit” well on the D-Wave hardware

 Relatively low QUBO modeling overhead

 Relatively low embedding overhead

 Problems where “nearly optimal is good enough”

• Tricks for reduction to quadratic order and minimizing qubit resource 

requirements

 “Gadgets”

 Variable fixing (e.g. roof duality)

 etc

• Tricks for mitigating control errors and processor noise

 Gauge transformations

 Parameter setting

 etc
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Example: Traveling Salesman Problem

Problem graph w 4 cities

size of feasible set = 24

QUBO graph w 16 vertices

size of QUBO domain = 216 = 65,536

City 1

City 2

City 3

City 4

Tour 
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QUBO modeling overhead

standard QUBO formulation
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Example: Traveling Salesman Problem
Embedding Overhead

N=4

N=5

N=6
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Examples of Near-Term Applications

• Optimization example

 Identifying Codes on deBruijn Graphs

• Machine Learning example

 Quantum-assisted training of Deep Neural Networks

• These examples are illustrative of problem types that “fit” relatively 

well on the machine, and common tricks for solving these problems 

using the D-Wave hardware
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Identifying Code Problem

on deBruijn Graphs
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Identifying Code Problem:

Informal Example

 Want to install smoke detectors in a house.

 Nodes in the graph represent rooms.

 A smoke detector can detect a fire in the same room or in an adjacent room.

• If there is an edge from node A to node B, then a smoke detector placed in room A 

can detect a fire in room B. 

 Want to install enough smoke detectors so that:

• If a fire occurs in any room, it will be detected

• If a fire occurs in one room, it can be uniquely determined which room the fire is in, 

by knowing which smoke detectors went off

 Questions:

• What is the minimum number of smoke detectors that need to be installed?

• How many different ways are there to place this number of smoke detectors?
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Examples of Identifying Codes (1)

m=2, n=2 m=2, n=3 m=2, n=4

DIRECTED deBruijn Graphs
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Examples of Identifying Codes (2)

m=2, n=2 m=2, n=3 m=2, n=4

UNDIRECTED deBruijn Graphs

(none)
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Known Solutions

Min code length

(# solns)

n

2 3 4 5 6 7

m

2
NA

(0)

4

(4)

6

(2)

12

(58)

≤24 ≤110

3
4

(3)

9

(4366)

? ? ? ?

4
5

(396)

? ? ? ? ?

5
6

(240)

? ? ? ? ?

6
8

(82,890)

? ? ? ? ?

7 9 ? ? ? ? ?

8 ≤10 ? ? ? ? ?

 Directed case

• For m=2, n=2 the min code length =3

• For all other (m,n), V. Horan proved that the min code length = 𝑚𝑛 −𝑚𝑛−1

 Undirected case

• Brute force (exhaustive search) results on Condor:
Solved on Vesuvius

 Somewhat reminiscent of the Ramsey number problem

BLUE entries found by S. Bak

using Z3 SMT solver

≤ indicates upper bound
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Solution Approach

© 2014 D-Wave Systems 

Embedding

Gauge Transformation

QUANTUM

ANNEALING

SAT-to-Ising

“gadgets”

Logical graph

(Ising model)

Physical graph

(D-Wave chip)

Encode solution(s) of Identifying 

Code problem as a SAT problem:

( x2 v x3 ) 

^ ( x0 v x2 v x4 v x5 v x8 v x9 ) 

^ ( x0 v x3 v x6 v x7 v x8 v x9 )

^ ...

Problem

decomposition

 



Eij i

iijiij xhxxJ  H

SOLUTION(s)

deBruijn graph

14 vars

63 nodes

253 qubits
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Estimates of qubits to solve larger instances

(m=2 case)
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Quantum-Assisted Training

of Deep Neural Networks
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Idea: How quantum sampling is applied to training of RBMs

• Restricted Boltzmann Machine model: 

• Weight updates are determined by the formula

• Second term is intractable; this has motivated approximate schemes such as 

Contrastive Divergence (CD):

• However, CD can take many iterations to converge (related to slow mixing of Gibbs sampling)

• We attempt to use quantum sampling to estimate the “intractable” term directly

 Quantum sampling has the potential to mix faster (e.g. due to tunneling)

Hidden layer

Visible layer

Energy functional

Joint probability distribution

V0

H0

V1

H1

Gibbs

sampling
Gibbs

sampling

Training

Data

Δ𝑤𝑖𝑗 ∝ 𝐻1𝑉1 − 𝐻0𝑉0

“Contrastive Divergence” (CD-1)

W = weights;  b,c = biases

𝑃 𝑣, ℎ =
𝑒−𝐸

𝑍
where 𝑍 =  𝑣,ℎ 𝑒

−𝐸

𝐸 𝑣, ℎ = − 

𝑖

𝑏𝑖𝑣𝑖 − 

𝑗

𝑐𝑗ℎ𝑗 − 

𝑖𝑗

𝑊𝑖𝑗𝑣𝑖ℎ𝑗

Δ𝑤𝑖𝑗 ∝
𝜕 log 𝑃

𝜕𝑤𝑖𝑗
=< 𝑣𝑖ℎ𝑗 >𝑑𝑎𝑡𝑎 − < 𝑣𝑖ℎ𝑗 >𝑚𝑜𝑑𝑒𝑙
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RBM

Quantum-assisted training

hidden
layer

hidden
layer

visible
layer

visible
layer

CLASSICAL COMPUTER

Training Outer Loop

Update weights

Embedding

Gauge transf.

𝑃 𝑣, ℎ =
𝑒−𝐸

𝑍

𝐸 𝑣, ℎ = −𝑏𝑣 − 𝑐ℎ − 𝑣𝑊ℎ

𝑃 𝑣, ℎ =
𝑒−𝛽𝑒𝑓𝑓ℋ𝑓

𝑍′
(ansatz)

𝑤𝑖𝑗
(𝑡+1)

= α𝑤𝑖𝑗
(𝑡)

+ ϵ[ 𝑣𝑖ℎ𝑗 𝑑𝑎𝑡𝑎− 𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙]

< 𝑣𝑖ℎ𝑗 >𝑚𝑜𝑑𝑒𝑙 ∼ 𝑣𝑖 ℎ𝑗 =
1

𝑁
 

𝑛=1

𝑁

𝑣𝑖
(𝑛)

ℎ𝑗
(𝑛)

Estimate model expectations using quantum sampling
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Test Case: “Coarse Grained” MNIST

MNIST data set (http://yann.lecun.com/exdb/mnist )

• Handwritten digits 0-9

• 60,000 training and 10,000 test set images with truth labels

• Each image consists of 784 greyscale pixels (28x28)

To fit the problem on Vesuvius, we “coarse-grained” the images:

• We discarded 2 pixels on each edge, leaving a 24x24 image

• We computed the average pixel value over each 4x4 block, resulting in a coarse-

grained 6x6 image

• We discarded the 4 corners, resulting in 32 super-pixels

• A more challenging recognition problem than the real MNIST!

original

image

(28x28)

coarse-grained

image

(6x6)

Original and coarse-grained versions of image from MNIST data set (handwritten digit 5) 

http://yann.lecun.com/exdb/mnist
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Results for CG-MNIST Data Set

100 post-training iterations

400 post-training iterations

200 post-training iterations

800 post-training iterations
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Scaling up to larger RBMs

Example: Paths to 1024x1024 RBM

Unit Cell Size

8 16 32 64 128 256 512 1024 2048
G

ri
d

 s
iz

e
 (

N
xN

 u
n

it
 c

e
lls

)

1 512 1024 2048 # qubits

256 512 1024 RBM size (NxN)

2 512 1024 2048 4096

128 256 512 1024

4 512 1024 2048 4096 8192

64 128 256 512 1024

8 512 1024 2048 4096 8192 16384

32 64 128 256 512 1024

16 2048 4096 8192 16384 32768

64 128 256 512 1024

32 8192 16384 32768 65536

128 256 512 1024

64 32768 65536 131072

256 512 1024

128 131072 262144

512 1024

256 524288

1024

High qubit overhead

Very long chains

Need ICE improvements

Bigger unit cells

Need design improvements

NOTE: This is assuming full bipartite RBM graphs.  Sparser RBMs may be 

acceptable and would have better scaling.
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Summary

• Progress in understanding problem types that are good candidates for 

near-term applications of Quantum Annealing

• Not yet able to demonstrate “quantum supremacy” for these 

applications, but …

• We are optimistic that this could occur in the foreseeable future, for 

specific problem types

• Further progress needed in Quantum Annealing hardware

 Increased qubit connectivity and control precision, and reduced processor noise, 

would be especially helpful for the applications described above
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BACKUP SLIDES
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D-Wave hardware overview

Qubit implementation

• rf SQUID Flux Qubit

• Compound-Compound

Josephson Junction

8-qubit unit cellNiobium on silicon

Pulse tube dilution refrigerator

1152-qubit “Washington” chip

Magnetically shielded enclosure (10-9 Tesla)

Images © Copyright 2012-2016 D-Wave Systems Inc. 



30© 2016 Lockheed Martin Corporation.  All rights reserved.

Quantum Adiabatic Algorithm & Quantum Annealing

ℋ 𝑡 = 1 −
𝑡

𝑇
ℋ𝑖 +

𝑡

𝑇
ℋ𝑓 0 ≤ t ≤ T

𝑇 >
𝐶  ℋ

Δ2

• Suppose we want to find the ground state of Hamiltonian 𝓗𝒇

• Start with a Hamiltonian 𝓗𝒊 with a known & easily prepared ground state

• “Slowly” evolve from 𝓗𝒊 to 𝓗𝒇

• Adiabatic theorem: we will end up in the ground state of 𝓗𝒇 if: 

• Caveats:

• Ideal adiabatic conditions (closed system)

• Non-ideal (open system)  “Quantum Annealing” (heuristic)

• In general we don’t know the minimum spectral gap Δ

Δ = min
𝑡

𝐸1 𝑡 − 𝐸0 𝑡
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Is it really “Quantum”?  Is there evidence for entanglement?

• Evidence of a quantum signature for 108 qubits:
S. Boixo, T.F. Rønnow, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer. (2013) 

Quantum annealing with more than one hundred qubits, http://arXiv.org/abs/1304.4595

• Entanglement “witnesses” & qubit tunneling spectroscopy:
T. Lanting,et al. (2014) Entanglement in a Quantum Annealing Processor

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.021041

• Evidence for coherent quantum tunneling:
D. Venturelli, S. Mandrà, S. Knysh, B. O'Gorman, R. Biswas, V. Smelyanskiy. (2014)

Quantum Optimization of Fully-Connected Spin Glasses. http://arxiv.org/abs/1406.7553

How can the D-Wave machine work when 𝑻𝟐 ≪ 𝑻 ?

• Experimental measurements of ground state populations
Dickson, N. G. et al. (2013) Thermally assisted quantum annealing of a 16-qubit problem. 

Nat. Commun. 4:1903 doi: 10.1038/ncomms2920 

http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2920.html

• Quantum Monte Carlo simulations
T. Albash, D. Lidar. (2015) How detrimental is decoherence in adiabatic quantum computation? 

http://arxiv.org/abs/1503.08767

(single-qubit

coherence time)

(annealing

time)

http://arxiv.org/abs/1304.4595
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.021041
http://arxiv.org/abs/1406.7553
http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2920.html
http://arxiv.org/abs/1503.08767
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Is It Faster than a Classical Computer?

• Jury is still out …
T.F. Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, M. Troyer

(2014) Defining and detecting quantum speedup. http://arxiv.org/abs/1401.2910

Most benchmarks to date have been on random Ising problems

Best classical algorithms: Optimized simulated annealing (Troyer, ETH Zurich), “Selby” code

O. Parekh, J. Wendt, L. Shulenburger, A. Landahl, J. Moussa, J. Aidun (2015) Benchmarking Adiabatic 

Quantum Optimization for Complex Network Analysis, Sandia Report SAND2015-3025. 

Speedup observed w D-Wave on affinity independent set and “planted” solution benchmarks, but 

not on other cases.

Choice of solution criteria (time to optimality vs. near-optimality) can affect benchmark results.

J. King, S. Yarkoni, M.M. Nevisi, J.P. Hilton, C.C. McGeoch (2015) Benchmarking a quantum annealing 

processor with the time-to-target metric. http://arxiv.org/abs/1508.05087

Studied “time-to-target” metric for D-Wave 2X vs. HFS, SA for random Ising & frustrated loop 

benchmarks.

V.S. Denchev, S. Boixo, S.V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy, J. Martinis, H. Neven. (2015) 

What is the Computational Value of Finite Range Tunneling?  http://arXiv.org/abs/1512.02206

For a specific benchmark, found ~108 speedup in time to 99% success prob. vs SA on single core.

http://arxiv.org/abs/1401.2910
http://arxiv.org/abs/1508.05087
http://arxiv.org/abs/1512.02206
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Graph Minor Embedding

QUBO

Problem
(5 variables)

QUBO

Graph
(5 logical qubits)

Embedding into

D-Wave Unit Cell
(8 physical qubits)

Problem: Find a subset of the numbers {2, 3, 5, 7, 11} whose sum is 8.

Minimize
𝑸 𝒙 = 2𝑥1 + 3𝑥2 + 5𝑥3 + 7𝑥4 + 11𝑥5 − 8 2

Worst Case - Complete Graph

13 logical qubits





Eij

jiij
x

xxQx minarg*

72 physical qubits

embedding

Ref: C. Klymko, B.D. Sullivan, T.S. Humble, Adiabatic Quantum Programming: Minor Embedding With Hard Faults,

http://arXiv.org/abs/1210.8395.

Simple Example - “Subset Sum” Problem

http://arxiv.org/abs/1210.8395
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Software Verification & Validation (V&V)

solution space

A

B

C

Software verification and validation can be posed with the D-Wave 

chip in the loop with a formal methods approach

• Canadian start-up QRA is designing the front end

• Lockheed Martin engineers integrate with the quantum annealer

V&V can be attacked with 

quantum optimization and 

machine learning

Implementation

Requirements SMT Instance
False = Defect Space

Satisfiability
(All-SAT)

Ising
(Binary Optimization)

Quantum

Computer

Modulo Theory
(Number Domain)

Feasible?
No

YesConsistent

Reqs/Implementation

Defect

Detected

Inconsistency in 

Reqs/Implementation


