

Simulating Quantum Annealing with Quantum Monte Carlo

Guglielmo Mazzola (ETH)

M. Troyer (ETH) S. Isakov, V. Smelyanskiy, S. Boixo, H. Neven (Google) Z. Jiang (NASA)

1. Introduction: QA vs SQA (the story so far)

- 2. Introduction: Quantum Monte Carlo (QMC) for SQA
- 3. Tunneling with QMC and with QA
- 4. Conclusions

Outline

outperform SA for 2D random Ising glasses

Boixo et. al. Nat. Phys. 10, 218 (2014)

EHzürich

2014: D-Wave does not display quantum speedup compared to SA.

Ronnow et. al. *Science*, **345**, 420 (2014)

V. Denchev et. al. arXiv:1510.08057

V. Denchev et. al. arXiv:1510.08057

10

1. Introduction: QA vs SQA (the story so far)

2. Introduction: Quantum Monte Carlo (QMC) for SQA

- 3. Tunneling with QMC and with QA
- 4. Conclusions

Outline

Simulating Quantum Annealing

Ideally we would like to solve timedependent Schroedinger equation:

$$\frac{d}{dt}|\psi(t)\rangle = -iH(t)|\psi(t)\rangle$$

Hilbert space scales exponentially with the size!

System size: ~40 spins

Quantum tunneling in the smallest droplet of water

Richardson et al. "**Concerted** hydrogenbond breaking by **quantum tunneling** in the water hexamer prism." *Science* **351**, **1310** (2016)

Quantum Monte Carlo simulations

Ultracold bose gas

S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I. Bloch, N. V. Prokof'ev, B. Svistunov & M. Troyer *Nature Physics* 6, 998–1004 (2010)

Simulating Quantum Annealing

Ideally we would like to solve timedependent Schroedinger equation:

$$\frac{d}{dt}|\psi(t)\rangle = -iH(t)|\psi(t)\rangle$$

Hilbert space scales exponentially with the size!

System size: ~40 spins

Quantum Monte Carlo (PIMC)

Computational effort scales linearly with size!

Santoro et. al. Science 295, 2427 (2001)

System size: ~10.000 spins

Density matrix is an operator:
$$\rho = e^{-\beta H}$$

 $Z = \operatorname{Tr} e^{-\beta H}$
Matrix elements are difficult to $\langle q | e^{-\beta H} | q' \rangle$ because $H = H_1 + H_2$
 $[H_1, H_2] \neq 0$
instead $e^{-\tau H} \approx e^{-\tau H_1} e^{-\tau H_2}$ $e^{-\beta H} = \lim_{M \to \infty} \left[e^{-\frac{\beta}{M} H_1} e^{-\frac{\beta}{M} H_2} \right]^M$
 $\langle q | e^{-\beta H} | q' \rangle = \int dq_1 \, dq_2 \cdots dq_M \, \langle q | e^{-\tau H} | q_1 \rangle$
 $\langle q_1 | e^{-\tau H} | q_2 \rangle \cdots \langle q_M | e^{-\tau H} | q' \rangle$

Density matrix is an operator:
$$\rho = e^{-\beta H}$$

 $Z = \operatorname{Tr} e^{-\beta H}$
Matrix elements are difficult to $\langle q | e^{-\beta H} | q' \rangle$ because $H = H_1 + H_2$
 $[H_1, H_2] \neq 0$
instead $e^{-\tau H} \approx e^{-\tau H_1} e^{-\tau H_2}$ $e^{-\beta H} = \lim_{M \to \infty} \left[e^{-\frac{\beta}{M} H_1} e^{-\frac{\beta}{M} H_2} \right]^M$
 $\langle q | e^{-\beta H} | q' \rangle = \int dq_1 \ dq_2 \cdots dq_M \ \langle q | e^{-\tau H} | q_1 \rangle$
 $\langle q_1 | e^{-\tau H} | q_2 \rangle \cdots \langle q_M | e^{-\tau H} | q' \rangle$

Density matrix is an operator:
$$\rho = e^{-\beta H}$$

Matrix elements are difficult to $\langle q | e^{-\beta H} | q' \rangle$ because $\begin{bmatrix} H = H_1 + H_2 \\ [H_1, H_2] \neq 0 \end{bmatrix}$
instead $e^{-\tau H} \approx e^{-\tau H_1} e^{-\tau H_2}$ $e^{-\beta H} = \lim_{M \to \infty} \left[e^{-\frac{\beta}{M} H_1} e^{-\frac{\beta}{M} H_2} \right]^M$
 $\langle q | e^{-\beta H} | q \rangle = \int dq_1 \ dq_2 \cdots dq_M \ \langle q | e^{-\tau H} | q_1 \rangle$
 $\langle q_1 | e^{-\tau H} | q_2 \rangle \cdots \langle q_M | e^{-\tau H} | q \rangle$

$$\langle \boldsymbol{q} | e^{-\beta H} | \boldsymbol{q} \rangle = \int dq_1 \ dq_2 \cdots dq_M \ \langle \boldsymbol{q} | e^{-\tau H} | q_1 \rangle$$
$$\langle q_1 | e^{-\tau H} | q_2 \rangle \cdots \langle q_M | e^{-\tau H} | \boldsymbol{q} \rangle$$

$$Z = \int dq \ \langle q | e^{-\beta H} | q \rangle = \int dq \ dq_1 \ dq_2 \cdots dq_M \ \langle q | e^{-\tau H} | q_1 \rangle$$

$$\langle q_1 | e^{-\tau H} | q_2 \rangle \cdots \langle q_M | e^{-\tau H} | q \rangle$$

$$Z = \sum_{\text{paths}} e^{-S[\text{path}]}$$
NB: only possible for stoquastic H

 $e^{-\mathcal{S}[q(\tau)]}$

Sum of all possible paths or trajectories in imaginary time $q(\tau)$

Each path contributes with

Dominant contributions come from paths

Form of $\mathcal{S}[q(\tau)]$ is system dependent.

 $q = \frac{\partial S[q(\tau)]}{\partial q(\tau)} = 0$

Guglielmo Mazzola | QuAASI 2016 | 20

Path Integral Monte Carlo: spin systems

Path Integral Monte Carlo: physical limit

$$e^{-\beta H} = \lim_{M \to \infty} \left[e^{-\frac{\beta}{M}H_1} e^{-\frac{\beta}{M}H_2} \right]^M$$

One could also optimise M at given β

Heim et. al. *Science* **348**, 215 (2015)

PIMC samples the correct partition function in the *physical* limit $M \to \infty$

Continuous time limit (CT)

- 1. Introduction: QA vs SQA (the story so far)
- 2. Introduction: Quantum Monte Carlo (QMC) for SQA
- 3. Tunneling with QMC and with QA
- 4. Conclusions

Outline

Experiment: compare runtimes of QA device vs QMC

The runtime of the (ideal) Quantum device is dictated by the Quantum Adiabatic theorem:

$$T_{QA} \propto \Delta^{-2}$$

How does the runtime of a QMC simulated annealing algorithm scale?

$$T_{QMC} \propto T_{QA}$$
 ?

 q^y

Path Integral Monte Carlo pseudodynamics

Doing the integral with Monte Carlo by sampling ringpolymer configurations (paths) with Metropolis weight $e^{-S[q(\tau)]}$

Evolution of the classical path as a function of the simulation time t

given by the Metropolis pseudo-dynamics (updates).

$$\frac{\partial q(\tau, t)}{\partial t} = -\frac{\delta \mathcal{S}[q(\tau, t)]}{\delta q(\tau, t)} + \eta(\tau, t)$$

$$\sum_{q} g^{x}$$
Guglielmo Mazzola | QuAASI 2016 | 25

Path Integral Monte Carlo pseudodynamics

Doing the integral with Monte Carlo by sampling ringpolymer configurations (paths) with Metropolis weight

 $e^{-\mathcal{S}[q(\tau)]}$

Evolution of the classical path as a function of the simulation time t

$$q(\tau, t)$$

given by the Metropolis pseudo-dynamics (updates).

The classical field, in a PIMC simulation, evolves through a Langevin equation,

$$\frac{\partial q(\tau, t)}{\partial t} = -\frac{\delta \mathcal{S}[q(\tau, t)]}{\delta q(\tau, t)} + \eta(\tau, t)$$

In a double well model, we know the transition state (transition path or trajectory in imaginary time) $q^{**}(\tau)$

The escape rate of this classical thermally activated event is given by Kramers theory (Boltzmann weight at the TS)

$$k \propto e^{-\mathcal{S}[q^{**}(\tau)]} \sim \Delta^2$$

Therefore we expect that the QMC tunneling rate must scale as $~\sim \Delta^2$

Continous space model: 1D double well

Ferromagnetic Ising system

Consider now a spin system.

 ψ_{L} ψ_{R} ϕ_{R} ϕ_{L} ϕ_{R} ϕ_{R

Path integral construction lead to an extended lattice (formally similar to the previous ring polymer)

$$\psi_0 = \frac{1}{\sqrt{2}} \left(\psi_L + \psi_R \right)$$

QMC tunneling rate in ferromagnetic Ising system

"Understanding Quantum Tunneling through Quantum Monte Carlo Simulations"

S.V. Isakov, G. Mazzola, V.N. Smelyanskiy, Z. Jiang, S. Boixo, H. Neven, and M. Troyer

arXiv:1510.08057

Let's measure QMC tunneling time as a function of the system size L.

Computing the thermal density matrix requires closed paths in imag. time

QMC tunneling rate in ferromagnetic Ising system

"Understanding Quantum Tunneling through Quantum Monte Carlo Simulations"

S.V. Isakov, G. Mazzola, V.N. Smelyanskiy, Z. Jiang, S. Boixo, H. Neven, and M. Troyer

arXiv:1510.08057

Let's measure QMC tunneling time as a function of the system size L.

Conclusions /1

We show that, for a double well model, we can identify the transition state of the PIMC pseudodynamics, *the instanton* $q^{**}(\tau)$, and the autocorrelation time scales as Δ^{-2}

We propose a simple modification of the PIMC algorithm, with open boundary conditions in imaginary time, which implies a quadratic speedup (quantum inspired classical algorithm).

We are currently working on finding possible exceptions to this matching, exploring models (borrowed from chemistry) which feature multidimensional tunnelling.

Clearly, also Hamiltonians with sign-problem (*non stoquastic*), beyond the Transverse field, may show scaling advantage compared to QMC.

Thank you!

