
1

Overcoming limitations of quantum
annealers

Federico Spedalieri
Information Sciences Institute

USC

International	Workshop	on	Quantum	Annealing	and	its	Applications	
in	Science	and	Industry	(QuAASI’16)
at	Jülich Supercomputing	Centre

• Quantum annealers are quantum computing
devices based on the adiabatic model of QC

• Less general than universal quantum
computing (like what is implemented by the
circuit model)

• Designed to solve computationally hard
problems know as combinatorial optimization
(like the Traveling Salesman problem)

Quantum annealers

Problem Application	

Traveling	salesman Logistics,	vehicle routing

Minimum	Steiner	tree Circuit layout,	network	design

Graph	coloring Scheduling,	register	allocation

MAX-CLIQUE Social	networks,	bioinformatics

QUBO Machine	learning,	software	V&V

Integer	Linear	Programming Natural language	processing

Sub-graph	isomorphism Cheminformatics,	drug	discovery

Job shop	scheduling Manufacturing

Motion	planning Robotics

MAX-2SAT Artificial	intelligence

Combinatorial optimization
• Optimization of a function over a discrete space
• State space grows exponentially with problem size
• Classically intractable (best algorithms scale exponentially)
• Related to decision problems (SAT) and NP-hardness

Ising and QUBO

• All these problems can be converted into one another with at most a
polynomial penalty

• A faster algorithm for one problem can be used for another

• Two of these problems are of interest for quantum annealing

Ising

QUBO
(quadratic unconstrained

binary optimization)

E(~s) =
X

i

hisi +
X

ij

Jijsisj , si 2 {�1,+1}minimize

min
x

x

T
Qx , xi 2 {0, 1}

s = 2x� 1
hi = 1

2Qii +
1
4

Pn
j=1 Qij

Jij = 1
4Qij

5

Adiabatic quantum optimization
• Find the minimum of

Shown	to	be	NP-hard	(Barahona,	1982)

• Solve using AQO

Find	the	ground	state	of	the	Ising Hamiltonian

HIsing =
X

i

hi�
z
i +

X

ij

Jij�
z
i �

z
j

using	adiabatic	interpolation	from	the	transverse	field	(Farhi et	al.,	2000)	

H(t) = A(t)
X

j

�x

j

+B(t)HIsing , t 2 [0, t
f

]

• Programming means finding the appropriate {hi, Jij}

E(~s) =
X

i

hisi +
X

ij

Jijsisj , si 2 {�1,+1}

Physical implementation

• D-Wave processor: implement a programmable set of interacting
magnetic elements (Ising)

• Idea: exploit quantum effects to produce the minimizing configuration more
efficiently

• Quantum effects have been experimentally observed on the D-Wave
processor

• Single qubit tuneling
• Multi-qubit tuneling
• Entanglement

Solving problems with QA
• Great! • We have a quantum annealer (D-Wave processor)

• It exhibits quantum effects

• Just pick you favorite problem and solve it!

• Example: • Given a graph G=(V,E) and a set of n colors, can
we color all vertices such that no edge connects
two vertices with the same color?
Application:	scheduling,	register	allocation

Variables
xv,i =

⇢
1 if vertex v has color i
0 otherwise

H = A
X

v

1�

nX

i=1

xv,i

!2

+A
X

(uv)2G

nX

i=1

xu,i xv,i

Solving problems with QA
• Suppose we have a graph with 10,000 vertices and the number of

colors is 10

• The total number of variables is 100,000

• But the number of qubits in our QA is only about 1000!

• Furthermore, the QUBO matrix of
the problem is fully connected

• But the couplings we can implement
on the QA are restricted

DW2
adjacency
matrix

Limitations of QA
• Limited size

(hi, Jij) �! (hi +�hi, Jij +�Jij)

• Intrinsic control errors

• Limited parameter range and precision
hi 2 [�2, 2]

Jij 2 [�1, 1]

• Restricted connectivity

Jij = 0 If (i,j) not in underlying physical
connectivity graph

(for D-Wave processor)

Limitations of QA
• We will discuss strategies to deal with size and connectivity limitations

• Limited size: decompose large problems into smaller ones

• Limited connectivity: • Create	smaller,	more	connected	
effective	graphs

• Exploit	sampling	capabilities

Problem Decomposition

• We need to reduce a QUBO problem on N variables to several smaller ones

• Choose a set of n < N variables and fix the values of the remaining ones

• Solve the n variable QUBO problem

• Repeat by choosing a different set of n variables until some exit criteria
are met

Terms involving fixed
variables become linear
terms

• There is no guarantee that decomposition will find the best answer
• How many and how the variables are chosen will impact the solution

Decomposition approaches

• We will discuss two possible approaches

• Cluster based: choose variables according to the
strength of their coupling

• Backbone based: choose variables according to
their contribution to the objective function

Cluster based decomposition

• Pick a random variable

• Find the variable that has the stronger coupling to it and add it to the
cluster

• Of all the variables coupled to the cluster, pick the variable “j” that
maximizes

• Repeat until the desired cluster size is reached

• Solve reduced QUBO on cluster variables

• Repeat for different cluster

Backbone based decomposition

• Certain variables seem to have a preferred value on most good solutions,
and are referred to as the “backbone” of the solution

• Identifying some of those variables allows us to reduce the problem
size, since they will have a fixed value for good solution

• To start, pick a random configuration as a candidate solution

• Order the variables according to how much they change the objective
function if flipped from their current values

• Choose the n variables that either reduce it or increase it the least

• Variables that increase the objective by a large amount when flipped
will remain with their assigned value and will not be optimized over

Procedure

Embedding approaches

• Once the problem is reduced we still need to embed it on the processor

• Canonical minor embedding: can embed any problem up to a
certain number of variables (45 in DW2X)

• Specialized minor embedding: can embed some larger problems
but requires computational effort

• Iterative sampling: can tackle much larger problems but optimality
is not guaranteed

• The embedding approach chosen will constraint the size of the
subproblems that can be considered

Minor embedding

• The first two approaches are based on the minor embedding technique

• The canonical approach requires no
precomputing but puts the stronger limit on the
size of the subproblems (Sqrt(N))

• The specialized approach may be able to solve
larger subproblems, but non trivial precomputing
may be required Embedding of 32 node,

fully connected graph

Beyond minor embedding

• If minor embedding is hard to find, use approximate
embedding

Approximate embedding: map only a subset of logical
couplers to physical couplers

• Use some criteria to choose mapping, like giving priority to
strongest couplers (requires pre-computing effort)

• Project into Chimera (cross fingers, hope for the best)

Both of these approaches can be improved by exploiting the sampling
capabilities of the D-Wave device

Iterative sampling

mins G(s) ! PG(s) =
e��G(s)

Z

• Replace optimization by sampling

• Consider the D-Wave processor as a sampler with knobs

PC(s ;hi, Jij)(hi, Jij)

• Find such that is “close” to (hi, Jij) PC(s ;hi, Jij) PG =
e��G(s)

Z

Parameterized approximate sampling

Minimize
(hi, Jij)

D(PC ||PG) =

X

s

PC(s ;hi, Jij) log

✓
PC(s ;hi, Jij)

PG

◆

• Use relative entropy as a measure of closeness

PC(s ;hi, Jij) '
1

Z
exp

0

@��(
X

i

hisi +
X

ij

Jijsi sj)

1

A

• In order to proceed, we’ll make the following assumption

Not completely accurate, not terribly inaccurate

Parameterized approximate sampling

• Compute (approximate) gradient of relative entropy

r{hi,Jij}D(PC ||PG) = ��

8
<

:

hsi log
�

PC

e��G(s)

�
iC � hsiiC hlog

�
PC

e��G(s)

�
iC

hsisj log
�

PC

e��G(s)

�
iC � hsisjiC hlog

�
PC

e��G(s)

�
iC

h· · · iC �! expected value on “Boltzmann” Chimera distribution

• Approximate by sample average (processor’s output)h· · · iC

• Update values (hi, Jij) �! (hi, Jij) + ↵r{hi,Jij}D(PC ||PG)

Iterative approximate sampling

• The algorithm goes as follows

1. Choose an initial embedding (i.e., map variables to physical qubits)
2. Project the original problem into the underlying Chimera graph
3. Run the annealer to generate N samples
4. Compute the approximate relative entropy gradient
5. Update couplers and local fields
6. Go to 3 (until some stopping criteria is reached)

• Parameters are updated respecting the box constraint hi 2 [�2, 2]

Jij 2 [�1, 1]

Complete graph with N=32
• Compare minor embedding of N=32 complete graph with iterative

sampling approach

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

1

Iterative samplingMinor embedding

VS

Decomposition + embedding

• We considered a set of 10 QUBO instances with 2500 variables designed by
Beasley (OR-library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html)

• We solved them using the two
decomposition approaches and then
applying the iterative sampling

• The iterative sampling was run on
DW2X

• We compared our results against the
best known solutions as a function
of the number of calls to the DW2X
processor

Lo
g	
(1
	–
Be

st
O
bj
ec
tiv
eF
ou

nd
/B
es
tO
bj
ec
tiv
eK

no
w
n)

Cluster	based

Backbone	based

Instance 1
(90% elements are nonzero)

Cluster	size	=	200

• Some preliminary results (ongoing research)

Summary

• Quantum annealers are designed to solve combinatorial
optimization problems

• They have limitations on size, connectivity, parameter range and
precision

• To solve large problems we need to break them into pieces
• The way those pieces are chose can impact performance
• Even when small in size, problems my not fit due to connectivity

constraints
• We can embed general general graphs if we pay a quadratic

penalty in the number of qubits required
• Sampling capabilities can also be exploited to approximate more

connected problems
• QA seems to be good at providing “good” solutions fast (even if it

not provides the best solution)

