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Quantum annealers

A

* Quantum annealers are quantum computing R

devices based on the adiabatic model of QC

>
* Less general than universal quantum
; : HP lio) = 10y [ }—3— 1] [k
cgmpg’rmg (like what is implemented by the = -
circuit model) B 7

s0)
81

)

* Designed to solve computationally hard
problems know as combinatorial optimization
(like the Traveling Salesman problem)
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Combinatorial optimization

* Optimization of a function over a discrete space

* State space grows exponentially with problem size

* Classically intractable (best algorithms scale exponentially)
* Related to decision problems (SAT) and NP-hardness

Traveling salesman Logistics, vehicle routing
Minimum Steiner tree Circuit layout, network design
Graph coloring Scheduling, register allocation
MAX-CLIQUE Social networks, bioinformatics
QUBO Machine learning, software V&V
Integer Linear Programming Natural language processing
Sub-graph isomorphism Cheminformatics, drug discovery
Job shop scheduling Manufacturing
Motion planning Robotics

— MAX-2SAT Artificial intelligence
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Ising and QUBO

* All these problems can be converted into one another with at most a
polynomial penalty

* A faster algorithm for one problem can be used for another

* Two of these problems are of interest for quantum annealing

Ising minimize  E(5) = Z hisi + Z Jijsis; , s € {—1,+1}
QUBO
(Quadratic unconstrained {miﬂx XTQX , x; € {0, 1}}
binary optimization)
hz’ = %) i
S:2X_1 Jij - zgz3+ Zj 1Q]
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Adiabatic quantum optimization R&

* Find the minimum of E(g) = thsz + Z JijSiSj ,  S; € {—1, —|—1}
7 1)
Shown to be NP-hard (Barahona, 1982)

* Solve using AQO

Find the ground state of the Ising Hamiltonian

2z P
HIsing = E hiO',i + E Jijai 0;

using adiabatic interpolation from the transverse field (Farhi et al., 2000)

J

{H(t) = A(t) ZO’}E + B(t)HIsing , L€ [0, tf]J

* Programming means finding the appropriate {hi, Jz‘j}
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Physical implementation &

« D-Wave processor: implement a programmable set of interacting
magnetic elements (Ising)

* Idea: exploit quantum effects to produce the minimizing configuration more
efficiently

* Quantum effects have been experimentally observed on the D-Wave
processor

* Single qubit tuneling
* Multi-qubit tuneling
* Enfanglement
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Solving problems with QA

 Great!

* We have a quantum annealer (D-Wave processor)

« It exhibits quantum effects

« Just pick you favorite problem and solve it!

« Example: * Given a graph G=(V,E) and a set of n colors, can
we color all vertices such that no edge connects
two vertices with the same color?

Application: scheduling, register allocation

: 1 if vertex v has color 7
Variables Lo,i = { 0 otherwise

n 2 n
H:AZ ].—ZQ?U,@ ‘|’A Sj Sjaju,ixv,i
v 1=1

(uv)eG 1=1
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Solving problems with QA i

* Suppose we have a graph with 10,000 vertices and the number of
colors is 10

e The total number of variables is 100,000

* But the number of qubits in our QA is only about 1000!

* Furthermore, the QUBO matrix of Y
the problem is fully connected \
0 N | w2
* But the couplings we can implement | adjacency
on the QA are restricted " ] matrix
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Limitations of QA

e Limited size

* Restricted connectivity

Jz-j =0 If (i,j) not in underlying physical
connectivity graph

* Limited parameter range and precision
h; € [—2, 2]
J’L’j S [_1? 1]

(for D-Wave processor)

e Intrinsic control errors
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Limitations of QA

* We will discuss strategies to deal with size and connectivity limitations

* Limited size: decompose large problems into smaller ones

* Limited connectivity: * Create smaller, more connected
effective graphs
* Exploit sampling capabilities
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Problem Decomposition

* We need to reduce a QUBO problem on N variables fto several smaller ones
* Choose a set of n < N variables and fix the values of the remaining ones

* Solve the n variable QUBO problem

N . . .

I I 1 Terms involving fixed
Z JijTiTj — 2 JijTij + Z T4 variables become linear
i,j=1 1,JES tES

terms

* Repeat by choosing a different set of n variables until some exit criteria
are met

* There is no guarantee that decomposition will find the best answer
* How many and how the variables are chosen will impact the solution
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Decomposition approaches ;

* We will discuss two possible approaches

* Cluster based: choose variables according to the
strength of their coupling

* Backbone based: choose variables according to
their contribution to the objective function
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Cluster based decomposition i

* Pick a random variable

* Find the variable that has the stronger coupling to it and add it fo the
cluster

« Of all the variables coupled to the cluster, pick the variable “j” that
maximizes

> il

ieCluster

* Repeat until the desired cluster size is reached
* Solve reduced QUBO on cluster variables

* Repeat for different cluster
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Backbone based decomposition i

* Certain variables seem to have a preferred value on most good solutions,
and are referred to as the “backbone” of the solution

 Identifying some of those variables allows us to reduce the problem
size, since they will have a fixed value for good solution

Procedure

* To start, pick a random configuration as a candidate solution

* Order the variables according to how much they change the objective
function if flipped from their current values

* Choose the n variables that either reduce it or increase it the least

* Variables that increase the objective by a large amount when flipped
will remain with their assigned value and will not be optimized over
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Embedding approaches

* Once the problem is reduced we still need to embed it on the processor

* Canonical minor embedding: can embed any problem up to a
certain number of variables (45 in DW2X)

* Specialized minor embedding: can embed some larger problems
but requires computational effort

« Iterative sampling: can tackle much larger problems but optimality
is not guaranteed

* The embedding approach chosen will constraint the size of the
subproblems that can be considered
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Minor embedding

* The first two approaches are based on the minor embedding technique

vV o—

* The canonical approach requires no
precomputing but puts the stronger limit on the
size of the subproblems (Sqrt(N))

* The specialized approach may be able to solve
larger subproblems, but non trivial precomputing

may be required Embedding of 32 node,
fully connected graph
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Beyond minor embedding i

* If minor embedding is hard to find, use approximate
embedding

Approximate embedding: map only a subset of logical
couplers to physical couplers

* Use some criteria to choose mapping, like giving priority fo
strongest couplers (requires pre-computing effort)

* Project into Chimera (cross fingers, hope for the best)

Both of these approaches can be improved by exploiting the sampling
capabilities of the D-Wave device
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Iterative sampling

* Replace optimization by sampling

A

ming G(s) — Pg(s) =

* Consider the D-Wave processor as a sampler with knobs

(hiy Jij) —>  Pc(s;hi, Jij)

A

* Find (h,,J;;) such that Po(s;h;, J;;) is “close” to FPa =

In formatian Sciences Institute USC Viterbi

School of Engineering



Parameterized approximate samplmg

* Use relative entropy as a measure of closeness

Minimize  D(Pc¢||Pg) = ZPC(S s hi, Jij) log (
(hi, Jij) s

Pco(sihi, Jij)
Pq

« In order to proceed, we'll make the following assumption

Pco(s; hi, Jij) =~ exp ( Zh S; + Z‘]"JSZ S; )

Not completely accurate, not terribly inaccurate

1 nformaz‘ian Sciences Institute USC Viterbi

School of Engineering



Parameterized approximate sampling RSl

* Compute (approximate) gradient of relative entropy

(silog (—55w7))c — (si)c (log (=557 ) ) e
Vin,s3D(Pcl||Peg) = -5
(sis510g (—=5Sa7)Yo — (sis)c (log (55w ) )e

(---)o — expected value on “Boltzmann” Chimera distribution

« Approximate (---)c by sample average (processors output)

* Update values  (hi, Jij) — (hs, Jij) + aVp, 4,3 D(Pel|Pg)
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Iterative approximate sampling i

* The algorithm goes as follows

Choose an initial embedding (i.e., map variables to physical qubits)
Project the original problem into the underlying Chimera graph
Run the annealer to generate N samples

Compute the approximate relative entropy gradient

Update couplers and local fields

Go to 3 (until some stopping criteria is reached)

o Ud W

* Parameters are updated respecting the box constraint  h; ¢ [-2,2]
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Complete graph with N=32

* Compare minor embedding of N=32 complete graph with iterative
sampling approach

Minor embedding

VS

7 o]
Fad

1
11, el
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Decomposition + embedding i

* Some preliminary results (ongoing research)

* We considered a set of 10 QUBO instances with 2500 variables designed by
Beasley (OR-library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html)

* We solved them using the two Cluster size = 200
decomposition approaches and then
applying the iterative sampling

* The iterative sampling was run on *
DW2X Cluster based

* We compared our results against the
best known solutions as a function
of the number of calls to the DW2X
processor

Log (1 — BestObjectiveFound/BestObjectiveKnown)

Instance 1
(90% elements are nonzero)
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Summary

* Quantum annealers are designed to solve combinatorial
optimization problems

* They have limitations on size, connectivity, parameter range and
precision

* To solve large problems we need to break them into pieces

* The way those pieces are chose can impact performance

* Even when small in size, problems my not fit due fo connectivity
constraints

* We can embed general general graphs if we pay a quadratic
penalty in the number of qubits required

* Sampling capabilities can also be exploited to approximate more
connected problems

* QA seems to be good at providing "good” solutions fast (even if it
not provides the best solution)
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