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• Quantum annealers are quantum computing 
devices based on the adiabatic model of QC

• Less general than universal quantum 
computing (like what is implemented by the 
circuit model) 

• Designed to solve computationally hard 
problems know as combinatorial optimization 
(like the Traveling Salesman problem)

Quantum annealers



Problem Application	

Traveling	salesman Logistics,	vehicle routing

Minimum	Steiner	tree Circuit layout,	network	design

Graph	coloring Scheduling,	register	allocation

MAX-CLIQUE Social	networks,	bioinformatics

QUBO Machine	learning,	software	V&V

Integer	Linear	Programming Natural language	processing

Sub-graph	isomorphism Cheminformatics,	drug	discovery

Job shop	scheduling Manufacturing

Motion	planning Robotics

MAX-2SAT Artificial	intelligence

Combinatorial optimization
• Optimization of a function over a discrete space
• State space grows exponentially with problem size
• Classically intractable (best algorithms scale exponentially)
• Related to decision problems (SAT) and NP-hardness



Ising and QUBO

• All these problems can be converted into one another with at most a 
polynomial penalty

• A faster algorithm for one problem can be used for another

• Two of these problems are of interest for quantum annealing
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Adiabatic quantum optimization
• Find the minimum of

Shown	to	be	NP-hard	(Barahona,	1982)

• Solve using AQO

Find	the	ground	state	of	the	Ising Hamiltonian
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using	adiabatic	interpolation	from	the	transverse	field	(Farhi et	al.,	2000)	
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• Programming means finding the appropriate {hi, Jij}
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Physical implementation

• D-Wave processor: implement a programmable set of interacting 
magnetic elements (Ising)

• Idea: exploit quantum effects to produce the minimizing configuration more 
efficiently 

• Quantum effects have been experimentally observed on the D-Wave 
processor 

• Single qubit tuneling
• Multi-qubit tuneling
• Entanglement



Solving problems with QA
• Great! • We have a quantum annealer (D-Wave processor)

• It exhibits quantum effects

• Just pick you favorite problem and solve it!

• Example: • Given a graph G=(V,E) and a set of n colors, can 
we color all vertices such that no edge connects 
two vertices with the same color?
Application:	scheduling,	register	allocation
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⇢
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Solving problems with QA
• Suppose we have a graph with 10,000 vertices and the number of 

colors is 10

• The total number of variables is 100,000 

• But the number of qubits in our QA is only about 1000!

• Furthermore, the QUBO matrix of 
the problem is fully connected

• But the couplings we can implement 
on the QA are restricted

DW2 
adjacency 
matrix



Limitations of QA 
• Limited size

(hi, Jij) �! (hi +�hi, Jij +�Jij)

• Intrinsic control errors

• Limited parameter range and precision
hi 2 [�2, 2]

Jij 2 [�1, 1]

• Restricted connectivity

Jij = 0 If (i,j) not in underlying physical 
connectivity graph 

(for D-Wave processor)



Limitations of QA 
• We will discuss strategies to deal with size and connectivity limitations

• Limited size: decompose large problems into smaller ones

• Limited connectivity: • Create	smaller,	more	connected	
effective	graphs

• Exploit	sampling	capabilities



Problem Decomposition

• We need to reduce a QUBO problem on N variables to several smaller ones

• Choose a set of n < N variables and fix the values of the remaining ones

• Solve the n variable QUBO problem

• Repeat by choosing a different set of n variables until some exit criteria 
are met

Terms involving fixed 
variables become linear 
terms

• There is no guarantee that decomposition will find the best answer
• How many and how the variables are chosen will impact the solution 



Decomposition approaches

• We will discuss two possible approaches

• Cluster based: choose variables according to the 
strength of their coupling 

• Backbone based: choose variables according to 
their contribution to the objective function



Cluster based decomposition

• Pick a random variable

• Find the variable that has the stronger coupling to it and add it to the 
cluster

• Of all the variables coupled to the cluster, pick the variable “j” that 
maximizes

• Repeat until the desired cluster size is reached

• Solve reduced QUBO on cluster variables

• Repeat for different cluster



Backbone based decomposition

• Certain variables seem to have a preferred value on most good solutions, 
and are referred to as the “backbone” of the solution

• Identifying some of those variables allows us to reduce the problem 
size, since they will have a fixed value for good solution

• To start, pick a random configuration as a candidate solution

• Order the variables according to how much they change the objective 
function if flipped from their current values

• Choose the n variables that either reduce it or increase it the least

• Variables that increase the objective by a large amount when flipped 
will remain with their assigned value and will not be optimized over

Procedure



Embedding approaches

• Once the problem is reduced we still need to embed it on the processor

• Canonical minor embedding: can embed any problem up to a 
certain number of variables (45 in DW2X)

• Specialized minor embedding: can embed some larger problems 
but requires computational effort

• Iterative sampling: can tackle much larger problems but optimality 
is not guaranteed

• The embedding approach chosen will constraint the size of the 
subproblems that can be considered 



Minor embedding

• The first two approaches are based on the minor embedding technique

• The canonical approach requires no 
precomputing but puts the stronger limit on the 
size of the subproblems (Sqrt(N))

• The specialized approach may be able to solve 
larger subproblems, but non trivial precomputing 
may be required Embedding of 32 node, 

fully connected graph



Beyond minor embedding

• If minor embedding is hard to find, use approximate 
embedding 

Approximate embedding: map only a subset of logical 
couplers to physical couplers 

• Use some criteria to choose mapping, like giving priority to 
strongest couplers (requires pre-computing effort)

• Project into Chimera (cross fingers, hope for the best)

Both of these approaches can be improved by exploiting the sampling 
capabilities of the D-Wave device



Iterative sampling

mins G(s) ! PG(s) =
e��G(s)

Z

• Replace optimization by sampling

• Consider the D-Wave processor as a sampler with knobs

PC(s ;hi, Jij)(hi, Jij)

• Find          such that                is “close” to (hi, Jij) PC(s ;hi, Jij) PG =
e��G(s)

Z



Parameterized approximate sampling

Minimize
(hi, Jij)

D(PC ||PG) =
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• In order to proceed, we’ll make the following assumption

Not completely accurate, not terribly inaccurate



Parameterized approximate sampling

• Compute (approximate) gradient of relative entropy

r{hi,Jij}D(PC ||PG) = ��

8
<

:

hsi log
�

PC

e��G(s)

�
iC � hsiiC hlog

�
PC

e��G(s)

�
iC

hsisj log
�

PC

e��G(s)

�
iC � hsisjiC hlog

�
PC

e��G(s)

�
iC

h· · · iC �! expected value on “Boltzmann” Chimera distribution

• Approximate           by sample average (processor’s output)h· · · iC

• Update values (hi, Jij) �! (hi, Jij) + ↵r{hi,Jij}D(PC ||PG)



Iterative approximate sampling

• The algorithm goes as follows

1. Choose an initial embedding (i.e., map variables to physical qubits)
2. Project the original problem into the underlying Chimera graph
3. Run the annealer to generate N samples
4. Compute the approximate relative entropy gradient
5. Update couplers and local fields
6. Go to 3 (until some stopping criteria is reached) 

• Parameters are updated respecting the box constraint  hi 2 [�2, 2]

Jij 2 [�1, 1]



Complete graph with N=32
• Compare minor embedding of N=32 complete graph with iterative 

sampling approach
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Decomposition + embedding

• We considered a set of 10 QUBO instances with 2500 variables designed by 
Beasley (OR-library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html)

• We solved them using the two 
decomposition approaches and then 
applying the iterative sampling

• The iterative sampling was run on 
DW2X

• We compared our results against the 
best known solutions as a function 
of the number of calls to the DW2X 
processor 
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Cluster	based

Backbone	based

Instance 1
(90% elements are nonzero)

Cluster	size	=	200

• Some preliminary results (ongoing research)



Summary

• Quantum annealers are designed to solve combinatorial 
optimization problems

• They have limitations on size, connectivity, parameter range and 
precision

• To solve large problems we need to break them into pieces
• The way those pieces are chose can impact performance
• Even when small in size, problems my not fit due to connectivity 

constraints
• We can embed general general graphs if we pay a quadratic 

penalty in the number of qubits required
• Sampling capabilities can also be exploited to approximate more 

connected problems
• QA seems to be good at providing “good” solutions fast (even if it 

not provides the best solution)


