# Solving Planning and Scheduling Problems w/ Quantum Annealers: Status and Challenges

### Davide Venturelli

Quantum AI Laboratory (QuAIL), Research Institute for Advanced Computer Science (RIACS) Universities Space Research Association (USRA) davide.venturelli@nasa.gov

#### **Collaborators:**

E. Rieffel, B. O'Gorman, Z. Wang, J. Frank, M. Do, B. Pokharel (NASA)
D. Marchand (1Qbit)
I. Trummer (Cornell Univ.)
T. Tran (Univ. Toronto)
T. Stollenwerk (DLR)



### Literature

- A Hybrid Quantum-Classical Approach to Solving Scheduling Problems . Tony T. Tran, Minh Do, Eleanor Rieffel, Jeremy Frank, Zhihui Wang, Bryan O'Gorman, Davide Venturelli and Chris Beck. In Symposium on Combinatorial Search (SoCS-16), 2016.
- Explorations of Quantum-Classical Approaches to Scheduling a Mars Lander Activity Problem. Tony
  T. Tran, Zhihui Wang, Minh Do, Eleanor G. Rieffel, Jeremy Frank, Bryan O'Gorman, Davide
  Venturelli, and J. Christopher Beck. In AAAI-16 Workshop on Planning for Hybrid Systems.
- Job Shop Scheduling Solver based on Quantum Annealing. Davide Venturelli, Dominic Marchand, Galo Rojo. In ICAPS-16 workshop Constraint Satisfaction Techniques for Planning and Scheduling (COPLAS-16)
- A case study in programming a quantum annealer for hard operational planning problems Eleanor Rieffel, Davide Venturelli, Bryan O'Gorman, Minh B. Do, Elicia Pristay, Vadim Smelyanskiy. Quantum Inf Process (2015) 14: 1

#### Upcoming on the arXiv

- T. Tran, DV et al. (2016)
- B. Pokharel, E. Rieffel, DV et. al (2016)
- I. Trummer, DV et. al (2016)

# **Bonus: Quantum Computing Background**

#### Universal Quantum Computing (Gate Model)

- ~30 years of theoretical research
- ~20 years of experimental research
- + Quadratic speedup in database search (Grover search)
- + Exponential speedup in cryptanalysis (Shor's factoring)
- + Killer app: Quantum Simulations
- Around 10 qubits working across technologies
- ~1M physical qubits required for real world applications
- 15+ years before fully integrated system

# **Bonus: Quantum Computing Background**

### Universal Quantum Computing (Gate Model)

- ~30 years of theoretical research
- ~20 years of experimental research
- + Quadratic speedup in database search (Grover search)
- + Exponential speedup in cryptanalysis (Shor's factoring)
- + Killer app: Quantum Simulations
- Around 10 qubits working across technologies
- ~1M physical qubits required for real world applications
- 15+ years before fully integrated system

#### Quantum Optimization (Annealing)

- ~15 years of theoretical research
- ~7-8 years experiments
- + General approach for all combinatorial optimization problems
- + Other groups are creating machines (Google, MIT Lincoln Lab.)
- + 1000+ qubit processors available
- + ~10K physical qubits required for useful problems
- Speedup and effect of noise/temperature largely unknown

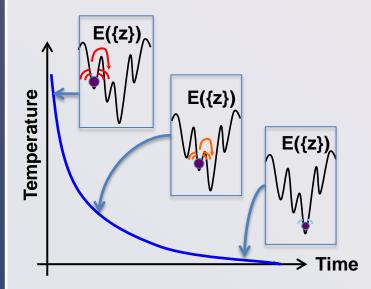
# **Bonus: Quantum Computing Background**

### Universal Quantum Computing (Gate Model)

- ~30 years of theoretical research
- ~20 years of experimental research
- + Quadratic speedup in database search (Grover search)
- + Exponential speedup in cryptanalysis (Shor's factoring)
- + Killer app: Quantum Simulations
- Around 10 qubits working across technologies
- ~1M physical qubits required for real world applications
- 15+ years before fully integrated system

#### Quantum Optimization (Annealing)

- ~15 years of theoretical research
- ~7-8 years experiments
- + General approach for all combinatorial optimization problems
- + Other groups are creating machines (Google, MIT Lincoln Lab.)
- + 1000+ qubit processors available
- + ~10K physical qubits required for useful problems
- Speedup and effect of noise/temperature largely unknown

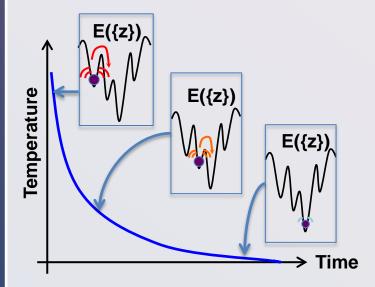



#### **Best hope!**

# **Intro: Simulated VS Quantum Annealing**

#### Simulated Annealing

(Kirkpatrick et al., 1983)




Bit flips activated by temperature

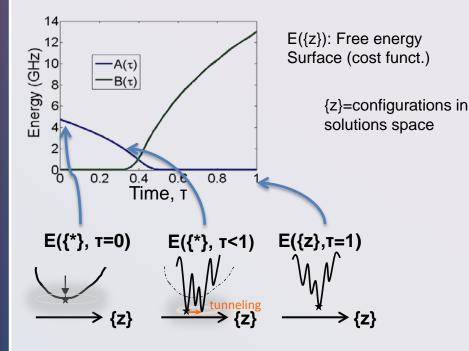
# **Quantum Annealing in a nutshell: D-Wave 2X**

#### Simulated Annealing

(Kirkpatrick et al., 1983)



### **3 Key differences:**

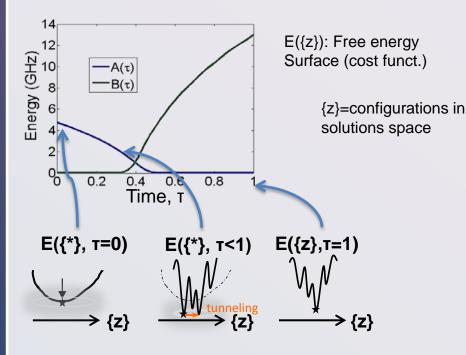

- 1) Superposition of bit-strings (tunneling)
- 2) Energy landscape changes over time
- 3) Equilibration and Adiabatic Theorem

Bit flips activated by temperature

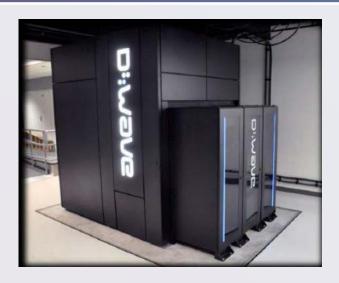
## **Quantum Annealing in a nutshell: D-Wave 2X**

#### Quantum Annealing

(Finnila et al. 1994, Kadawaki&Nishimori 1998, Farhi et.al. 2001)




Bit flips activated by tunneling


# **Quantum Annealing in a nutshell: D-Wave 2X**

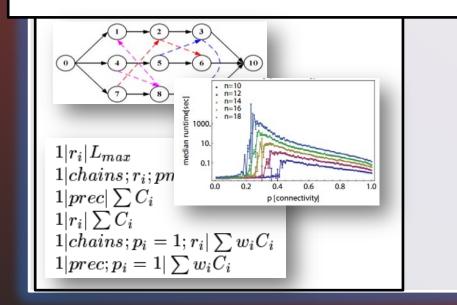
#### Quantum Annealing

(Finnila et al. 1994, Kadawaki&Nishimori 1998, Farhi et.al. 2001)



Bit flips activated by tunneling



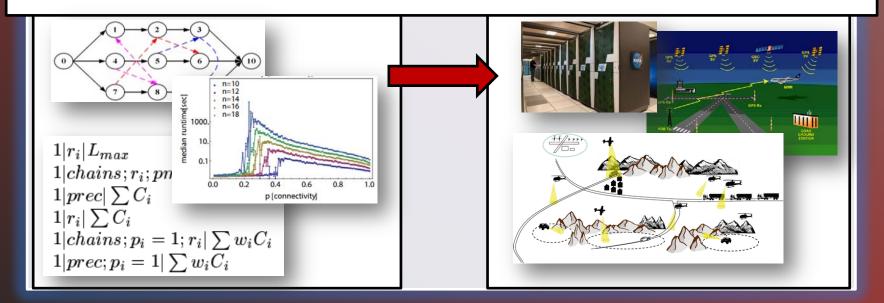

#### □ Not adiabatic:

- "Strong" noise
- "High" temperature (12mK)
- Only a single annealing protocol
   "Slow" speed (5µs)

# **Theory VS Real World**

#### Paradigmatic Theory of Scheduling Problems

- Truly random ensembles
- Known mappings and "phase transitions"
- Solid classical algorithmics and literature
- "Easy" parametrization




# **Theory VS Real World**

#### Paradigmatic Theory of Scheduling Problems Real world scheduling problems

- Truly random ensembles
- Known mappings and "phase transitions"
- Solid classical algorithmics and literature
- "Easy" parametrization

- Correlated, not random
- Hardness is very much instance dependent
- Classical approaches are ad-hoc heuristics
- Can feature convoluted structure

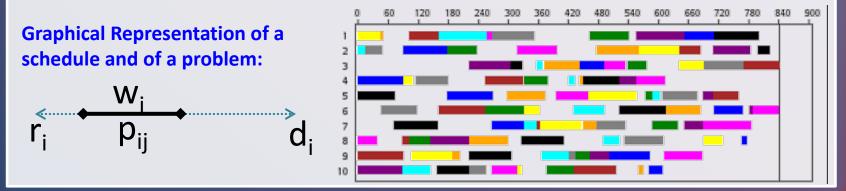


# **The basics of Scheduling**

#### **Machine Environment**

Shared Resources with finite capacities: Regions of Space, Regions of time, Shared Equipment..

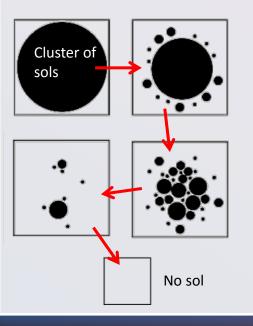
#### **Job Characteristics**


Processing times, ordering, Batching, due dates, validity windows ...

#### **Objective Function**

Metric that determines best solutions: Minimize total time, Maximize total priority, Maximize total utilizations

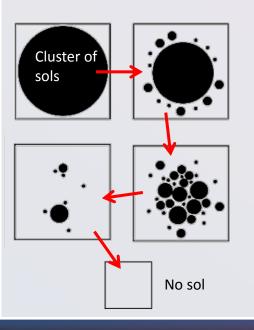
Example: R10 | 
$$p_{ij} = [0, ..., \tau], r_j, d_j | \sum_i w_i U_i$$


Example of notation for Alternative Resource Scheduling



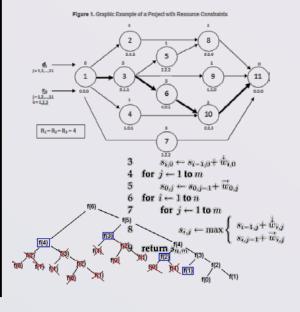
# **Scheduling Benchmarks**

### **Phase Transitions**


What parameters make instances truly hard?



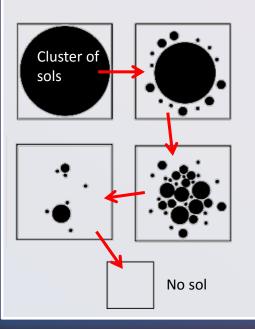
# **Scheduling Benchmarks**


### **Phase Transitions**

What parameters make instances truly hard?

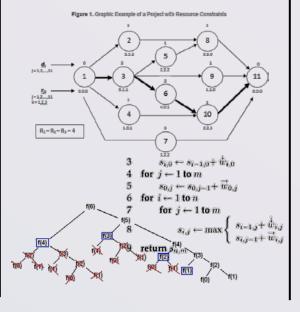


### **Tailored Algorithms**


What is the best possible known way to solve these hard instances?



# **Scheduling Benchmarks**


### **Phase Transitions**

What parameters make instances truly hard?

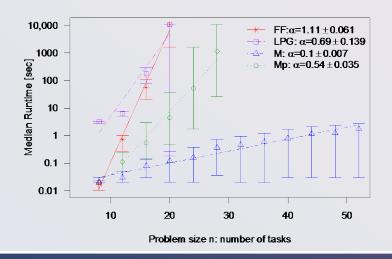


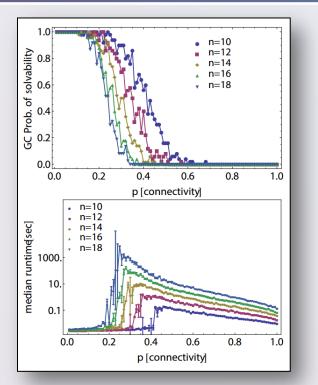
### Tailored Algorithms

What is the best possible known way to solve these hard instances?



### **Commercial Solvers**


What is the current way to solve these instances?




### **Phase Transitions in Combinatorial Problems**

- Parametrize an ensemble of instances
- Find an "easy-hard-easy" pattern
- Check for exponential scaling in N

Planner Comparison: All Scheduling Problems





(Rieffel, Venturelli, Do, Hen, Frank 2013)

See <u>Taillard Instances</u>, standard benchmarks, found in OR library

## **Commercial solvers**

W. Ku and J. Beck, technical report, Univ. of Toronto (2014).

Commercial Solvers needs to be properly tuned to take advantage of parallelism and most recent features.

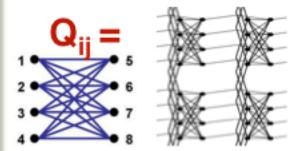
Dash, S. (2013). A note on QUBO instances defined on Chimera graphs.arXiv preprint arXiv:1306.1202.

(D-Wave was benchmarked  $\approx$ 20x faster than what it was possible)

Other example: for diagnostics we used HyDE... Programs of Xerox PARC

|                     |                    |                   | CPLEX              | Results | 5                |     |                    |     |  |  |
|---------------------|--------------------|-------------------|--------------------|---------|------------------|-----|--------------------|-----|--|--|
| Problem             |                    |                   | Disjunctive (Liao) |         | Rank-based       |     | Time-Indexed       |     |  |  |
|                     | Time (arith/geo)   | Opt               | Time (arith/geo)   | Opt     | Time (arith/geo) | Opt | Time (arith/geo)   | Opt |  |  |
| $3 \times 3$        | 0.00 / 0.00        | 10                | 0.00 / 0.00        | 10      | 0.02 / 0.02      | 10  | 0.02 / 0.01        | 10  |  |  |
| $4 \times 3$        | <b>0.01</b> / 0.01 | 10                | 0.01 / 0.00        | 10      | 0.05 / 0.05      | 10  | 0.04 / 0.03        | 10  |  |  |
| $5 \times 3$        | 0.01 / 0.01        | 10                | 0.01 / 0.01        | 10      | 0.15 / 0.15      | 10  | 0.17 / 0.17        | 10  |  |  |
| $3 \times 6$        | <b>0.01</b> / 0.01 | 10                | 0.01 / 0.00        | 10      | 0.31 / 0.31      | 10  | 0.18 / 0.18        | 10  |  |  |
| $3 \times 8$        | <b>0.01</b> / 0.01 | 10                | 0.01 / 0.00        | 10      | 1.58 / 1.56      | 10  | 0.44 / 0.42        | 10  |  |  |
| $3 \times 10$       | 0.01 / 0.01        | 10                | 0.01 / 0.01        | 10      | 15.53 / 12.31    | 10  | 0.94 / 0.85        | 10  |  |  |
| $5 \times 5$        | 0.02 / 0.02        | 10                | 0.02 / 0.02        | 10      | 144.77 / 72.50   | 10  | 2645.95 / 2108.04  | (   |  |  |
| $8 \times 8$        | 0.59 / 0.58        | 10                | 0.94 / 0.92        | 10      | _9               | -   | 3001.69 / 2478.13  | 2   |  |  |
| $10 \times 10$      | 5.95 / 5.30        | 10                | 10.51 / 9.06       | 10      | _10              | -   | _10                |     |  |  |
| $12 \times 12$      | 443.84 / 113.58    | 10                | 893.67 / 281.83    | 8       | _10              | -   | _10                |     |  |  |
| $15 \times 15$      | 2650.83 / 1839.91  | 4                 | 3454.52 / 3418.51  | 1       | _10              | -10 | #                  | #   |  |  |
| $20 \times 15$      | -                  | -                 | -                  | -       | _10              | -   | #                  | #   |  |  |
| GUROBI Results      |                    |                   |                    |         |                  |     |                    |     |  |  |
| Problem             | Disjunctive        |                   | Disjunctive (Liao) |         | Rank-based       |     | Time-Indexed       |     |  |  |
| 1                   | Time (arith/geo)   | Opt               | Time (arith/geo)   | Opt     | Time (arith/geo) | Opt | Time (arith/geo)   | Op  |  |  |
| $3 \times 3$        | 0.00 / 0.00        | 10                | 0.00 / 0.00        | 10      | 0.02 / 0.02      | 10  | 0.08 / 0.08        | 10  |  |  |
| $4 \times 3$        | 0.01 / 0.01        | 10                | 0.01 / 0.01        | 10      | 0.05 / 0.05      | 10  | 0.19 / 0.19        | 10  |  |  |
| $5 \times 3$        | 0.01 / 0.01        | 10                | 0.02 / 0.02        | 10      | 0.08 / 0.08      | 10  | 0.50 / 0.50        | 10  |  |  |
| $3 \times 6$        | 0.00 / 0.00        | 10                | 0.01 / 0.01        | 10      | 0.14 / 0.14      | 10  | 0.54 / 0.53        | 10  |  |  |
| $3 \times 8$        | 0.00 / 0.00        | 10                | 0.01 / 0.01        | 10      | 0.37 / 0.37      | 10  | 0.97 / 0.94        | 10  |  |  |
| $3 \times 10$       | 0.00 / 0.00        | 10                | 0.01 / 0.01        | 10      | 1.86 / 1.84      | 10  | 1.44 / 1.41        | 10  |  |  |
| $5 \times 5$        | 0.02 / 0.02        | 10                | 0.06 / 0.06        | 10      | 17.65 / 13.37    | 10  | 175.92 / 115.00    | 10  |  |  |
| $8 \times 8$        | 0.39 / 0.39        | 10                | 1.60 / 1.53        | 10      |                  |     | 3070.665 / 2752.28 | 2   |  |  |
| $10 \times 10$      | 2.75 / 2.56        | 10                | 12.44 / 10.41      | 10      | -4 -             |     | _10                |     |  |  |
| $12 \times 12$      | 475.65 / 112.61    | 10                | 575.15 / 175.23    | 9       | _6               | -   | -10                |     |  |  |
| $15 \times 15$      | 2428.93 / 1544.48  | 4                 | 2927.63 / 2488.25  | 4       | _10              | -   | #                  | #   |  |  |
| $20 \times 15$      | -                  | -                 | -                  | -       | _10              | -   | #                  | #   |  |  |
|                     |                    |                   | SCIP R             | esults  |                  |     |                    |     |  |  |
| Problem Disjunctive |                    | Disjunctive (Liao |                    | )       | ) Rank-based     |     | Time-Indexed       |     |  |  |
| 1                   | Time (arith/geo)   | Opt               | Time (arith/geo)   | Opt     | Time (arith/geo) | Opt | Time (arith/geo)   | Op  |  |  |
| $3 \times 3$        | 0.00 / 0.00        | 10                | 0.00 / 0.00        | 10      | 0.08 / 0.08      | 10  | 0.55 / 0.55        | 10  |  |  |
| $4 \times 3$        | 0.03 / 0.03        | 10                | 0.02 / 0.02        | 10      | 0.36 / 0.36      | 10  | 2.50 / 2.46        | 10  |  |  |
| $5 \times 3$        | 0.07 / 0.07        | 10                | 0.03 / 0.03        | 10      | 1.41 / 1.40      | 10  | 9.56 / 9.12        | 10  |  |  |
| $3 \times 6$        | 0.01 / 0.01        | 10                | 0.01 / 0.01        | 10      | 0.69 / 0.69      | 10  | 10.64 / 9.89       | 10  |  |  |
| $3 \times 8$        | 0.02 / 0.02        | 10                | 0.01 / 0.01        | 10      | 3.28 / 3.26      | 10  | 34.35 / 31.43      | 10  |  |  |
| $3 \times 10$       | 0.02 / 0.02        | 10                | 0.01 / 0.01        | 10      | 13.47 / 12.20    | 10  | 90.52 / 80.96      | 10  |  |  |
| $5 \times 5$        | 0.15 / 0.15        | 10                | 0.06 / 0.06        | 10      | 63.27 / 53.51    | 10  | 3258.18 / 3153.64  | 1   |  |  |
| $8 \times 8$        | 3.38 / 3.34        | 10                | 1.25 / 1.25        | 10      | _10              | -   | -                  |     |  |  |
| $10 \times 10$      | 23.14 / 18.39      | 10                | 8.34 / 7.30        | 10      | _10              | -   | _8                 |     |  |  |
| $12 \times 12$      | 1037.63 / 483.41   | 10                | 225.50 / 125.50    | 10      | _10              | -   | _10                |     |  |  |
| $15 \times 15$      | 3093.30 / 2747.59  | 2                 | 2647.18 / 2143.10  | 4       | _10              | -10 | #                  | #   |  |  |
|                     |                    |                   |                    |         | _10              |     |                    | #   |  |  |

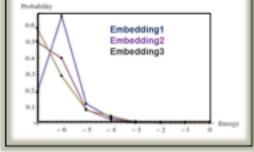
## **Programming Steps**


#### 1 Map the target combinatorial optimization problem into QUBO

No general algorithms, smart mathematical tricks (penalty functions, locality reduction..)

$$E(z_1, z_2 \dots z_N) = \sum_{ij} Q_{ij} z_i z_j$$
E(001010011)
E(101110010)

#### 2 Embed the QUBO coupling matrix in the hardware graph of interacting qubits

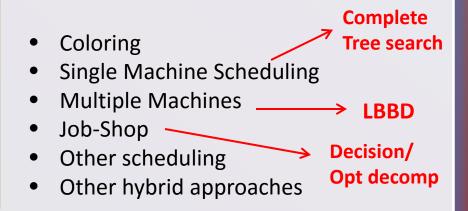

The D-Wave hardware qubit connectivity is a "Chimera Graph", so embedding methods mostly based on heuristics



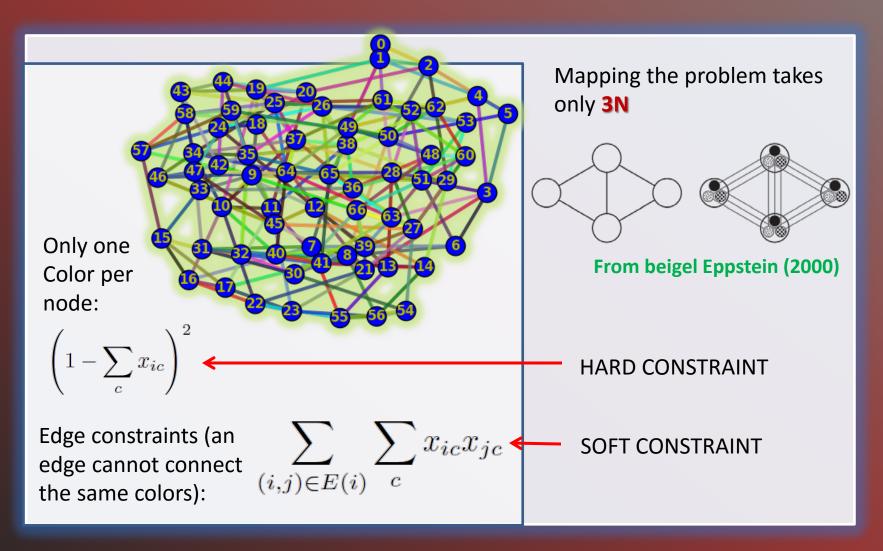
Note: D-Wave provides a heuristic blackbox compiler that bypasses embedding

#### 3 Run the problem many times and collect statistics

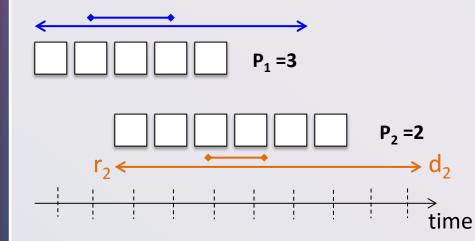
Use symmetries, permutations, and error correction to eliminate the systemic hardware errors and check the solutions




#### 1 Map the target combinatorial optimization problem into QUBO

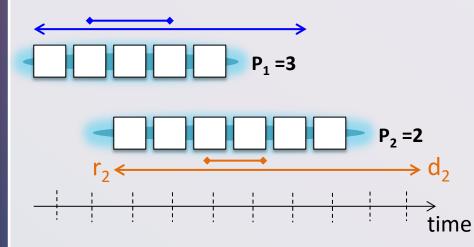

No general algorithms, smart mathematical tricks (penalty functions, locality reduction..)

$$E(z_1, z_2 \dots z_N) = \sum_{ij} Q_{ij} z_i z_j$$


Pre-processing, QUBO mapping, decomposition



## **Example 0: Graph Coloring**



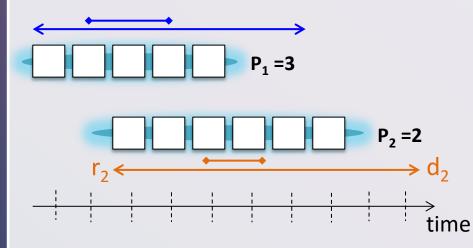

Time-Indexed Formulation: X<sub>it</sub>=1 if job executed at time t or =0 otherwise



Only the starting points are represented by a bit.

#### Time-Indexed Formulation: X<sub>it</sub>=1 if job executed at time t or =0 otherwise




Only the starting points are represented by a bit.

This generates fully-connected cliques: see embedding talk.

Jobs needs to be scheduled only once:

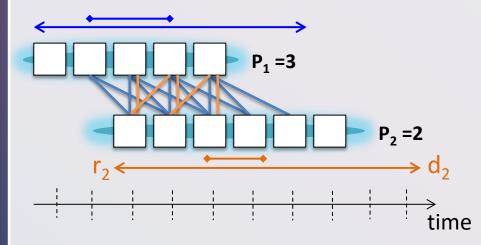
$$\Delta H_{a} = \Sigma_{i} (\Sigma_{t} x_{it} - 1)^{2}$$

#### Time-Indexed Formulation: X<sub>it</sub>=1 if job executed at time t or =0 otherwise



Only the starting points are represented by a bit.

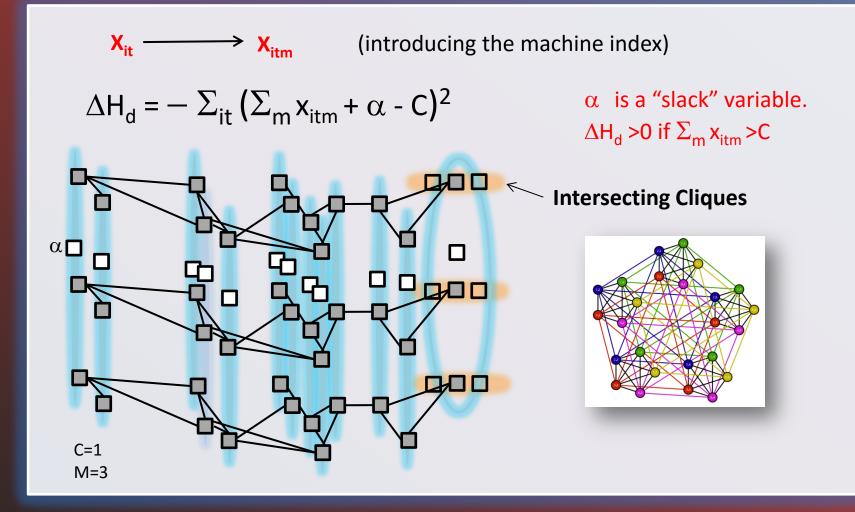
This generates fully-connected cliques: see embedding talk.


Jobs needs to be scheduled only once:

 $\Delta H_a = \sum_i \frac{1}{2} \sum_{tt'} s_{it} s_{it'} + \dots$ 

$$\Delta H_{a} = \Sigma_{i} (\Sigma_{t} x_{it} - 1)^{2}$$

 $x_{it} = \frac{1}{2}(s_{it} + 1)$ 


#### Time-Indexed Formulation: X<sub>it</sub>=1 if job executed at time t or =0 otherwise



Specific Job-dependent "setup times" can be trivially added the same way.

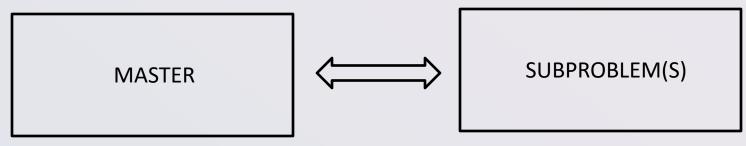
Jobs needs avoid conflict, considering the processing times:

$$\Delta H_{b} = \frac{1}{2} \sum_{it} \sum_{j \neq i} (\Sigma_{\tau} s_{it} s_{j(t+\tau)}) + \dots$$

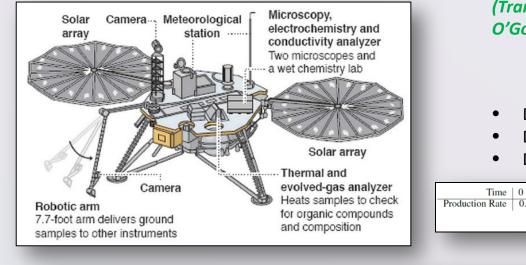


## **Resource Requirement Scaling**

#### Naturally quadratic fomulation:


- Typically required **N\*M\*L** qubits, with **L=[d<sub>i</sub>-r<sub>i</sub>]** before pre-processing.
- N\*M cliques of L size, intersecting N\*L cliques of size ≈M
- Each  $\delta \tau$  overlap of **R** tasks also generates cliques of size  $\approx R \delta \tau$
- Reset times just add connections (consider all N(N-1)/2 pairs)
- Capacities introduce ancilla slack qubits and possible precision requirements.

## **Resource Requirement Scaling**


#### Naturally quadratic fomulation:

- Typically required **N\*M\*L** qubits, with **L=[d<sub>i</sub>-r<sub>i</sub>]** before pre-processing.
- N\*M cliques of L size, intersecting N\*L cliques of size ≈M
- Each  $\delta \tau$  overlap of **R** tasks also generates cliques of size  $\approx R \delta \tau$
- Reset times just add connections (consider all N(N-1)/2 pairs)
- Capacities introduce ancilla slack qubits and possible precision requirements.

#### **Pre-processing and decompose**

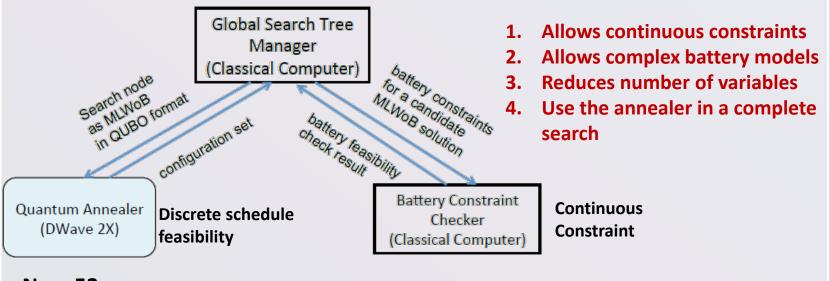


# **Example 1: Mars Lander Scheduling**



(Tran, Wang, Do, Rieffel, Frank, O'Gorman, Venturelli, Beck 2015)

#### Instances


- Different initial battery levels
- Different battery capacity
- Different martian weather

| Time                                          | 0 - 4 | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13 - 19 |
|-----------------------------------------------|-------|------|------|------|------|------|------|------|------|---------|
| Production Rate                               | 0.00  | 0.03 | 0.06 | 0.12 | 0.15 | 0.15 | 0.12 | 0.06 | 0.03 | 0.00    |
| Table 2: Example solar power production rate. |       |      |      |      |      |      |      |      |      |         |

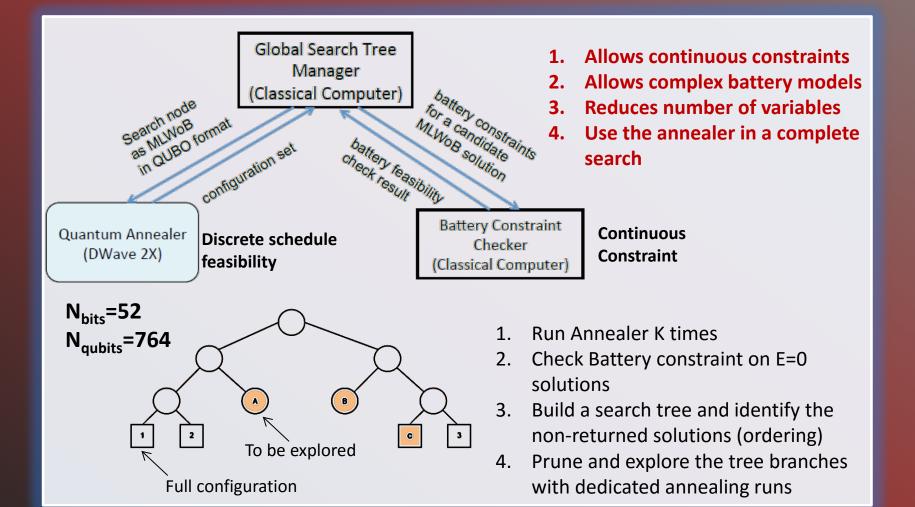
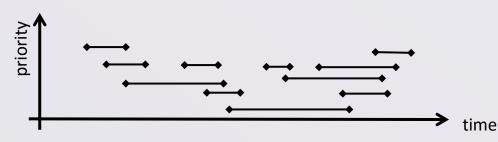

Precedences Battery Consumption Rate ID Description Duration Time-Window(s) Take Panoramic Picture [6, 16]0.04 1 2 -2 Measure Weather [2, 8]0.03 1 3 3 Take Workspace Picture [0, 13]0.05 4 3 Gather Soil [3, 16]3 0.08 5 Bake Sample 4 [6, 20]4 0.115 6 Send Data 1 [3, 5], [14, 16] 0.04

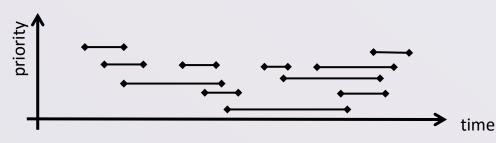
Table 1: Scheduling information regarding tasks.


### **Decomposing the battery constraint**



## **Decomposing the battery constraint**

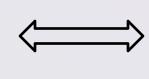



## **Example 2: Alternative Resource Scheduling**



- M 1 Machines
- N 🛛 1 Jobs
- Overlapping windows [r<sub>i</sub>, d<sub>i</sub>]
- Machine-dependent processing times p<sub>mj</sub>
- Machine-dependent execution cost c<sub>mi</sub>

How to distribute the N jobs among the M machines to minimize the cost?


# **Example 2: Alternative Resource Scheduling**

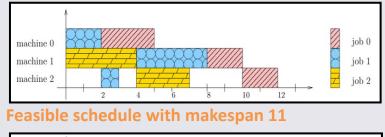


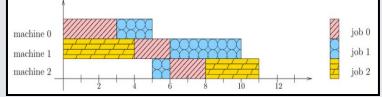
- M 1 Machines
- N [] 1 Jobs
- Overlapping windows [r<sub>i</sub>, d<sub>i</sub>]
- Machine-dependent processing times p<sub>mj</sub>
- Machine-dependent execution cost c<sub>mi</sub>

#### **Pre-processing and decompose**

MASTER: Relaxed Problem Assign Jobs




SUBPROBLEM(S) Each is a single machine assignment: check legit

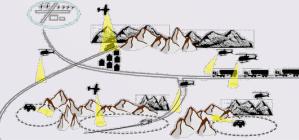

How to distribute the N jobs among the M machines to minimize the cost?

# **Example 3: Job-shop Scheduling**

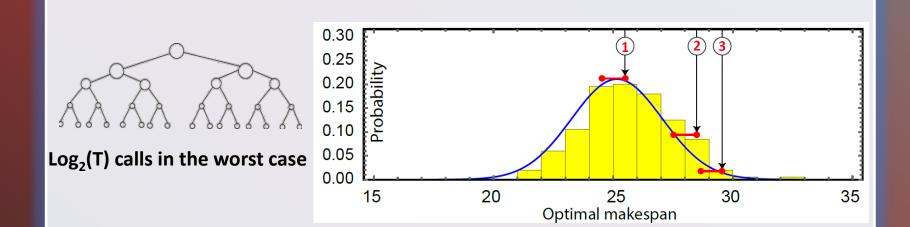
|       | 1 <sup>st</sup> operation | 2 <sup>nd</sup> operation | 3 <sup>rd</sup> operation |
|-------|---------------------------|---------------------------|---------------------------|
| JOB 0 | Machine 0 for 3t          | Machine 1 for 2t          | Machine 2 for 2t          |
| JOB 1 | Machine 0 for 2t          | Machine 2 for 1t          | Machine 1 for 4t          |
| JOB 2 | Machine 1 for 3t          | Machine 2 for 3t          | Machine 0 for 0t          |

#### Feasible schedule with makespan 12






#### **Aeronautics applications**

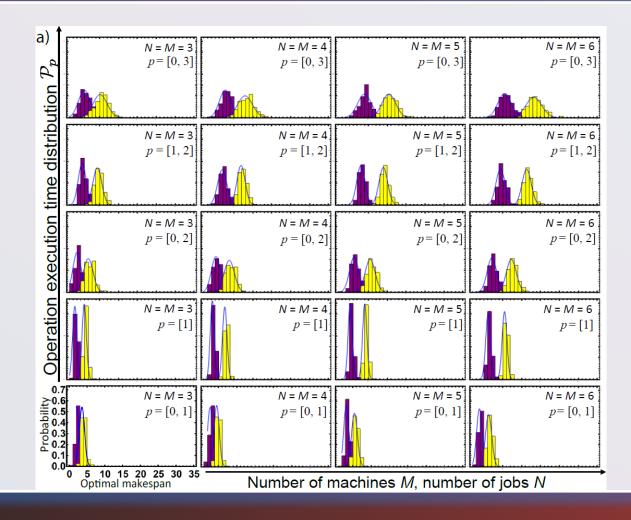

#### **Computing applications**



#### **Resource allocation of assets**



## JSP as a CSP + Binary Search



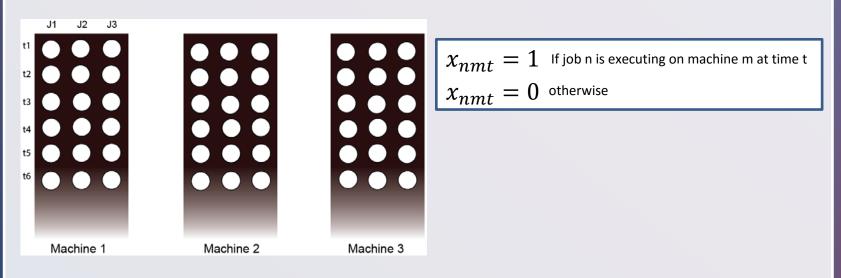

#### For N=M=2=50

Knowing the distribution I need less than 5 calls on average, instead of ≈20

$$\operatorname{erf}\left(\frac{T_{\max} + \frac{1}{2} - \langle \mathcal{T} \rangle}{\sigma\sqrt{2}}\right) + \operatorname{erf}\left(\frac{T_{\min} + \frac{1}{2} - \langle \mathcal{T} \rangle}{\sigma\sqrt{2}}\right) = \\\operatorname{erf}\left(\frac{T + \frac{1}{2} - \langle \mathcal{T} \rangle}{\sigma\sqrt{2}}\right) + \operatorname{erf}\left(\frac{T - \max(1, K) + \frac{1}{2} - \langle \mathcal{T} \rangle}{\sigma\sqrt{2}}\right),$$

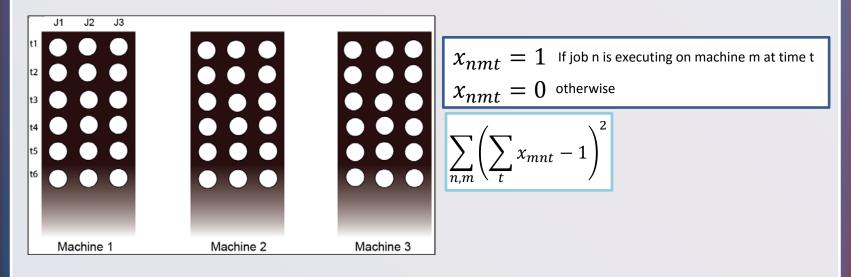
### **Benchmarking: ensemble pre-characterization**




# **JSP: QUBO mapping**

|       | 1 <sup>st</sup> operation | 2 <sup>nd</sup> operation | 3 <sup>rd</sup> operation |
|-------|---------------------------|---------------------------|---------------------------|
| JOB 0 | Machine 0 for 3t          | Machine 1 for 2t          | Machine 2 for 2t          |
| JOB 1 | Machine 0 for 2t          | Machine 2 for 1t          | Machine 1 for 4t          |
| JOB 2 | Machine 1 for 3t          | Machine 2 for 3t          | Machine 0 for 0t          |

 $E(x_1,\ldots,x_N) = \sum_{i\leq j}^N Q_{ij} x_i x_j$ 

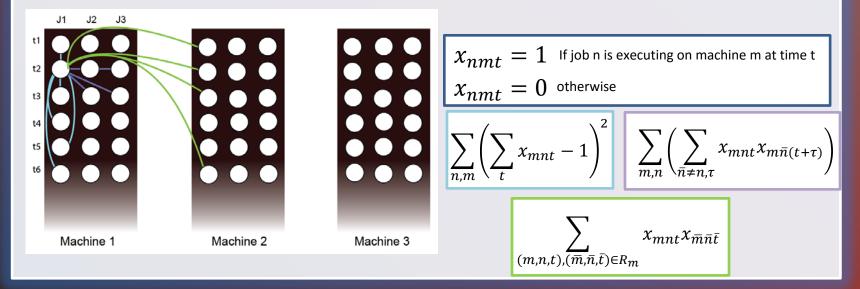

| 1 <sup>st</sup> operation | 2 <sup>nd</sup> operation            | 3 <sup>rd</sup> operation                                        |
|---------------------------|--------------------------------------|------------------------------------------------------------------|
| Machine 0 for 3t          | Machine 1 for 2t                     | Machine 2 for 2t                                                 |
| Machine 0 for 2t          | Machine 2 for 1t                     | Machine 1 for 4t                                                 |
| Machine 1 for 3t          | Machine 2 for 3t                     | Machine 0 for 0t                                                 |
|                           | Machine 0 for 3t<br>Machine 0 for 2t | Machine 0 for 3tMachine 1 for 2tMachine 0 for 2tMachine 2 for 1t |

$$E(x_1,...,x_N) = \sum_{i\leq j}^N Q_{ij} x_i x_j$$



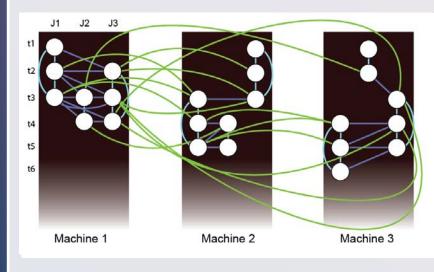
|       | 1 <sup>st</sup> operation | 2 <sup>nd</sup> operation | 3 <sup>rd</sup> operation |
|-------|---------------------------|---------------------------|---------------------------|
| JOB 0 | Machine 0 for 3t          | Machine 1 for 2t          | Machine 2 for 2t          |
| JOB 1 | Machine 0 for 2t          | Machine 2 for 1t          | Machine 1 for 4t          |
| JOB 2 | Machine 1 for 3t          | Machine 2 for 3t          | Machine 0 for 0t          |

$$E(x_1,...,x_N) = \sum_{i\leq j}^N Q_{ij} x_i x_j$$

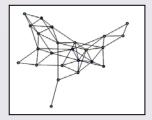


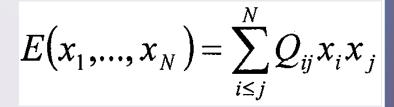

|       | 1 <sup>st</sup> operation | 2 <sup>nd</sup> operation | 3 <sup>rd</sup> operation |
|-------|---------------------------|---------------------------|---------------------------|
| JOB 0 | Machine 0 for 3t          | Machine 1 for 2t          | Machine 2 for 2t          |
| JOB 1 | Machine 0 for 2t          | Machine 2 for 1t          | Machine 1 for 4t          |
| JOB 2 | Machine 1 for 3t          | Machine 2 for 3t          | Machine 0 for 0t          |
|       |                           |                           |                           |

$$E(x_1,\ldots,x_N) = \sum_{i\leq j}^N Q_{ij} x_i x_j$$

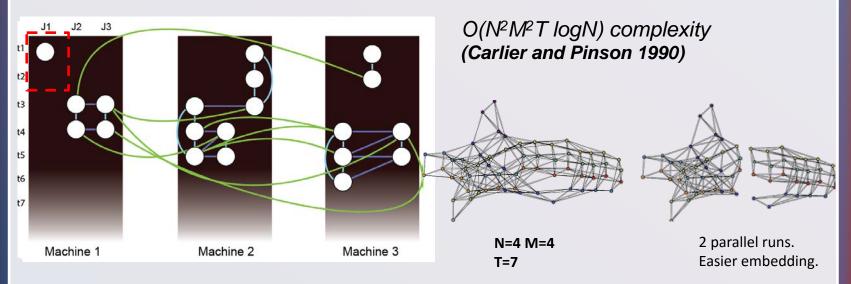

|       | 1 <sup>st</sup> operation | 2 <sup>nd</sup> operation | 3 <sup>rd</sup> operation |
|-------|---------------------------|---------------------------|---------------------------|
| JOB 0 | Machine 0 for 3t          | Machine 1 for 2t          | Machine 2 for 2t          |
| JOB 1 | Machine 0 for 2t          | Machine 2 for 1t          | Machine 1 for 4t          |
| JOB 2 | Machine 1 for 3t          | Machine 2 for 3t          | Machine 0 for 0t          |

$$E(x_1,\ldots,x_N) = \sum_{i\leq j}^N Q_{ij} x_i x_j$$





$$E(x_1,\ldots,x_N) = \sum_{i\leq j}^N Q_{ij} x_i x_j$$

#### Simple execution time bounds computation




N M T bits required - N M (M -1) bits





More advanced pre-processing (EdgeFinding, TaskInterval...)



# Wrapping up: hybrid approaches

#### PRE-PROCESSING

e.g. evaluating trivial simplifications where the job execution choices are obvious

Polynomial algorithms of "shaving" and "pruning"

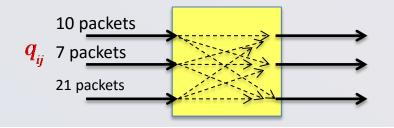
Attempts to solve in polynomial time to eliminate easy instances

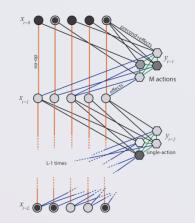
#### **DECOMPOSITION SEARCHING**

e.g. turning an optimization problem into a series of decision calls

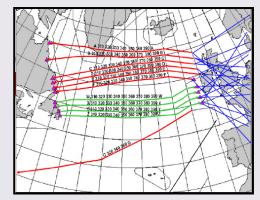
Decomposing the problem in smaller sub-problems

□ Explore the tree: exploration vs exploitation tradeoff


Use statistical information due to the pre-characterization of instance ensemble Perhaps exploit the "unique sampling" capabilities of the annealer?

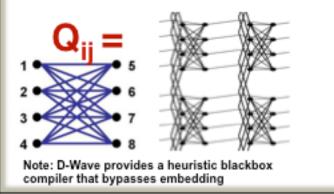

# **Other Scheduling Problems**

#### Not discussed..


- Planning (Rieffel et al.)
- Runway Landing Sequencing (Z.Wang et al.)
- Lagrangian Dual (Ronagh et al.)
- Database Query Optimization (Trummer et al.)
- Iterative Variable fixing heuristics (Karimi et al.)

#### Packet-Switching, Advisory Problems, Asset Allocation...







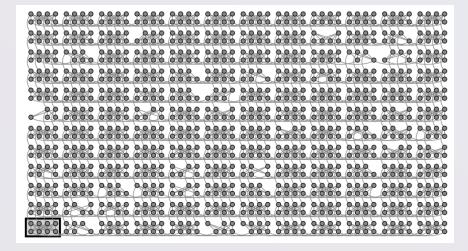



### 2 Embed the QUBO coupling matrix in the hardware graph of interacting qubits

The D-Wave hardware qubit connectivity is a "Chimera Graph", so embedding methods mostly based on heuristics



Embedding: optimizing Compilation

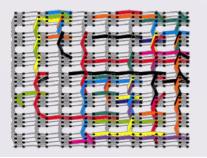

### Minor embedding: QUBOs → Chimera

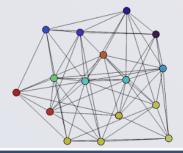
|     |     |     |      | 0 |      |   |   | 0 |  |   | 0 |    | 0   |  |   |  |  |  |        |  | 0 |  | 0 |  |   |   |   |   | 2  |    |    | 00 |
|-----|-----|-----|------|---|------|---|---|---|--|---|---|----|-----|--|---|--|--|--|--------|--|---|--|---|--|---|---|---|---|----|----|----|----|
| B   |     |     | 0    | 0 |      |   | 0 |   |  |   |   |    |     |  |   |  |  |  |        |  |   |  |   |  | 0 |   | 0 |   | 8  | 0  |    | 00 |
|     |     |     |      |   |      |   |   |   |  |   |   |    | 000 |  |   |  |  |  |        |  |   |  |   |  |   |   |   |   |    |    |    |    |
|     |     |     |      |   |      |   |   |   |  |   |   |    | 00  |  | 0 |  |  |  |        |  |   |  |   |  |   |   |   |   |    |    |    |    |
|     |     |     |      |   |      |   |   |   |  |   |   |    |     |  |   |  |  |  |        |  |   |  |   |  |   |   |   |   | 00 | 00 |    |    |
|     |     |     |      |   |      |   |   |   |  |   |   |    |     |  |   |  |  |  |        |  | 0 |  |   |  |   |   |   | 0 | 0  |    | 00 | 00 |
|     |     |     |      | 0 |      |   |   |   |  |   |   |    |     |  |   |  |  |  |        |  |   |  |   |  |   |   |   |   |    |    |    | 0  |
| K   | 2.9 |     | 0    |   |      |   |   |   |  | 0 |   | 00 | 0   |  |   |  |  |  | $\leq$ |  | 0 |  |   |  |   |   |   |   |    |    |    |    |
|     |     |     | 00   | 0 |      |   |   | 0 |  | 0 |   |    | 0   |  |   |  |  |  |        |  | 0 |  |   |  |   | 8 |   |   |    |    |    | 00 |
|     |     |     |      | 0 |      |   |   |   |  |   |   |    |     |  |   |  |  |  |        |  |   |  |   |  |   |   |   |   |    |    |    |    |
| TSO | 320 | 880 | CT I | 0 | CT 9 | ~ |   |   |  |   |   |    |     |  |   |  |  |  |        |  |   |  |   |  |   |   |   |   |    |    |    |    |

 $E(\mathbf{s}) = \sum_{i} h_i s_i + \sum_{i,j} J_{i,j} s_i s_j$ *i*. *i* 

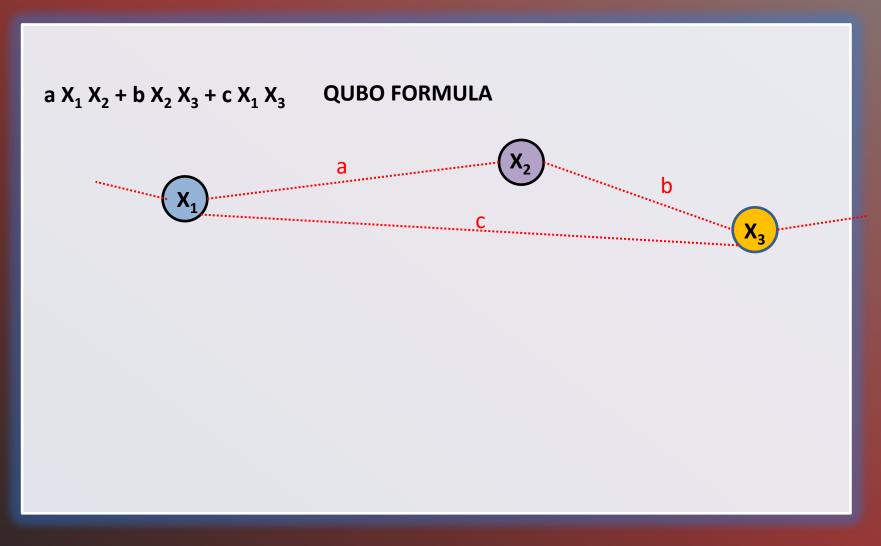
$$\begin{split} S_i &= \pm 1 \\ h_i &\approx [-1, 1] \approx 10 \text{ values} \\ J_i &\approx [-1, 1] \approx 10 \text{ values} \end{split}$$

### Minor embedding: QUBOs → Chimera

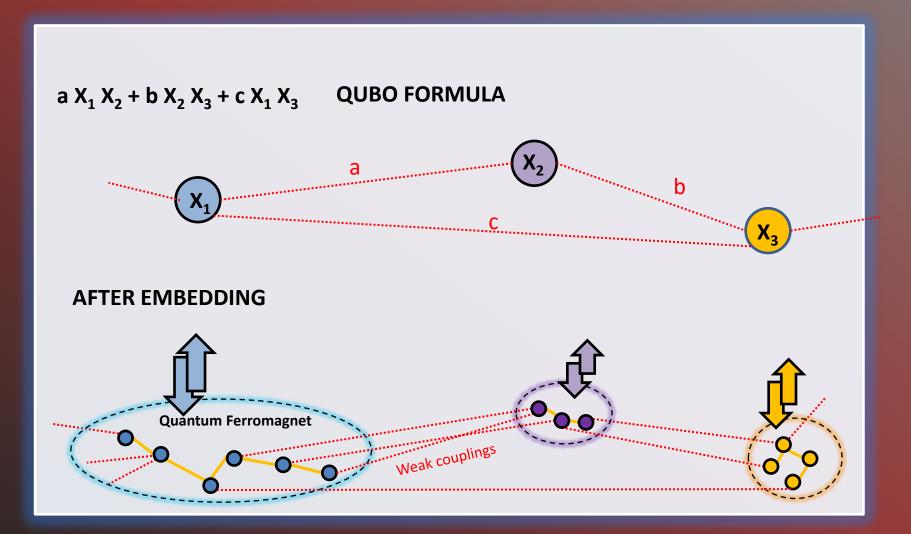




#### (n<sub>P</sub> logical bits)

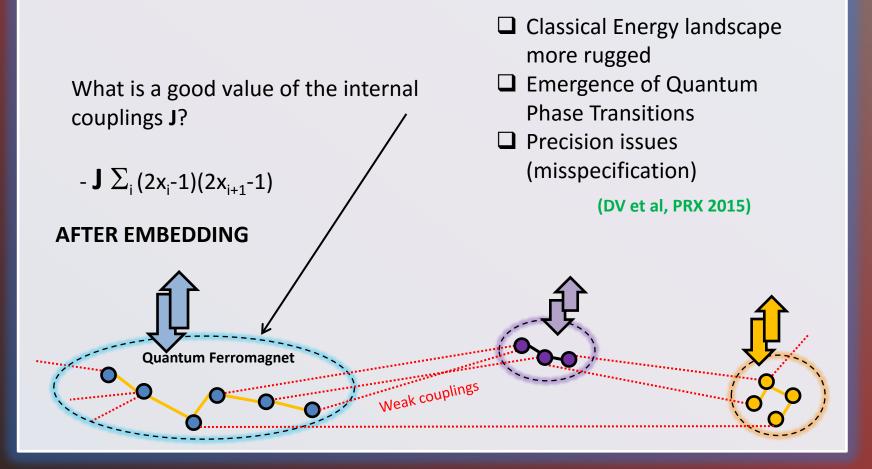
$$\mathcal{E}(i): \{1,\ldots,n_L\} \to 2^{\{1,\ldots,n_P\}}$$


Assign "colors" to connected sets of qubits

#### (n<sub>H</sub> hardware qubits)





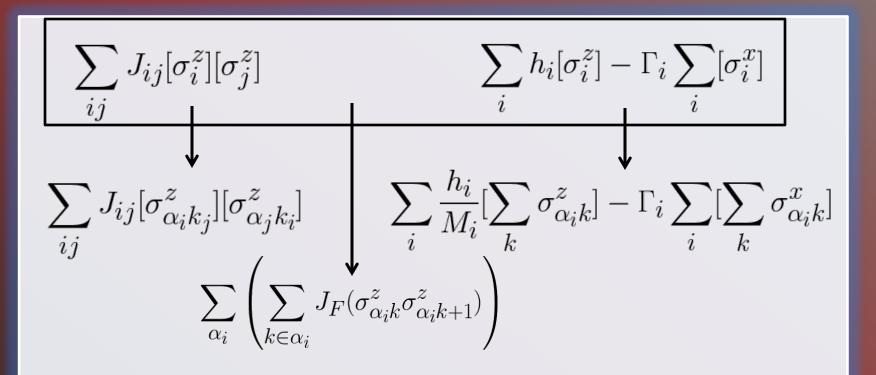


## **Embedding:** Parameter setting



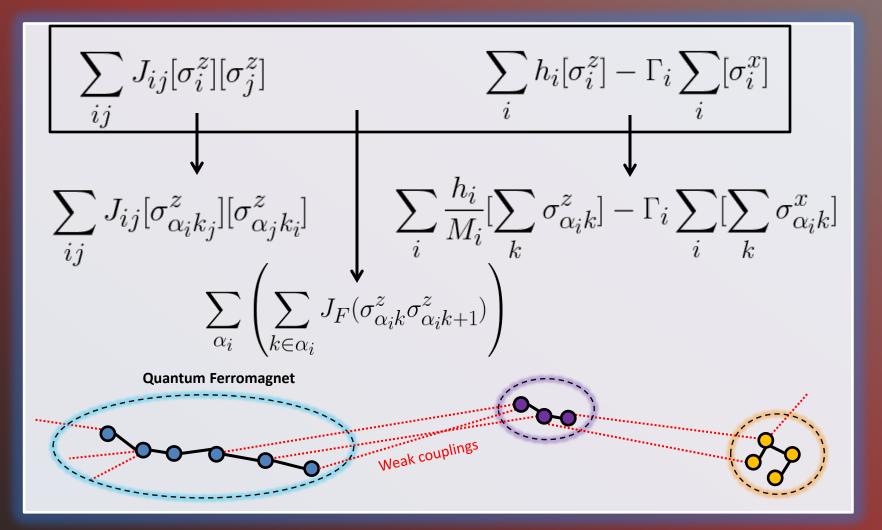
## **Embedding:** Parameter setting



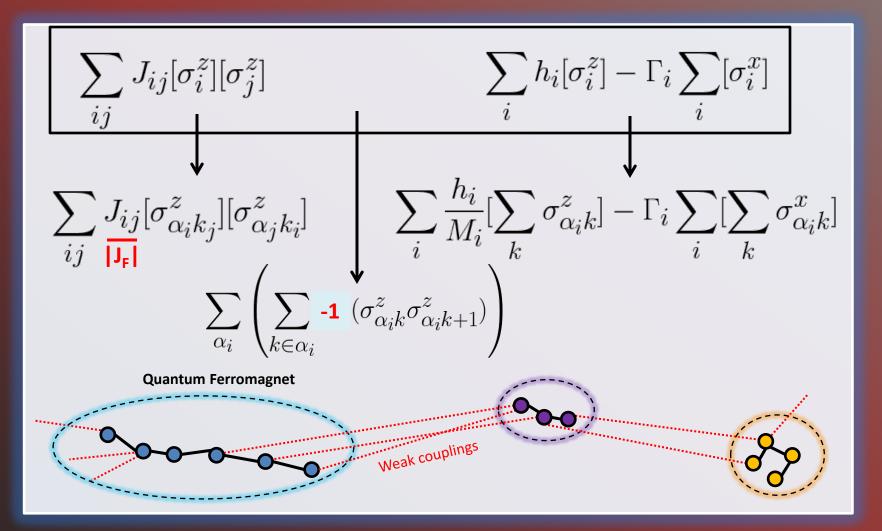
## **Embedding:** Parameter setting



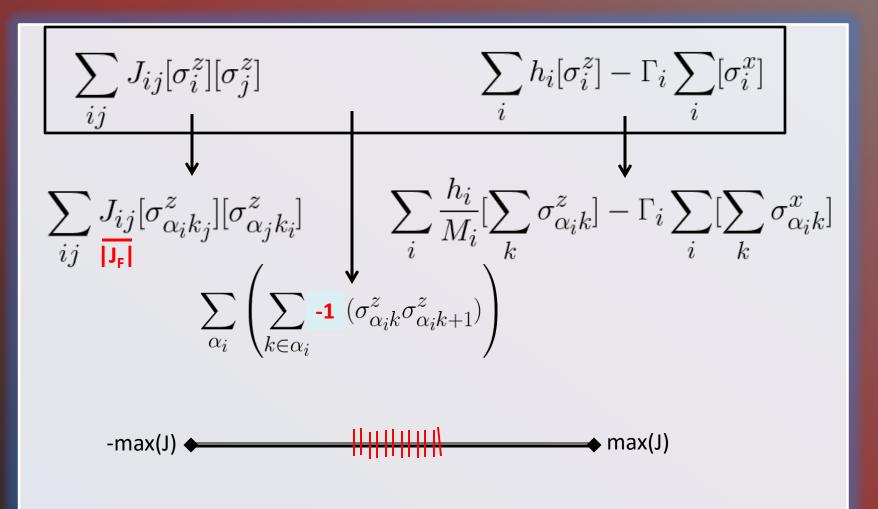

### Embedded H


 $\sum_{ij} J_{ij}[\sigma_i^z][\sigma_j^z]$ 

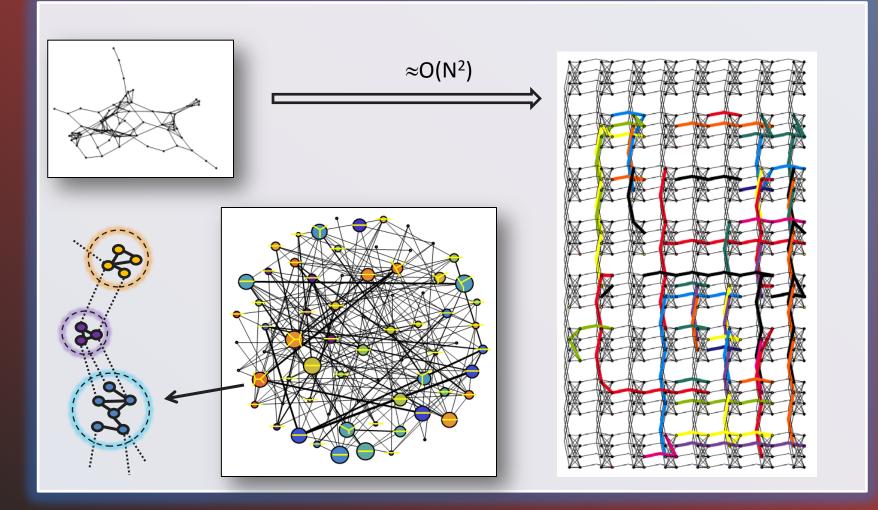
 $\sum_{i} h_i[\sigma_i^z] - \Gamma_i \sum_{i} [\sigma_i^x]$ 


## Embedded H




## **Embedded H**

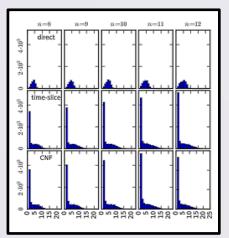


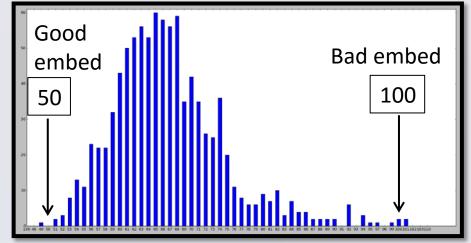

## **Embedded H: precision**



## **Embedded H: precision**



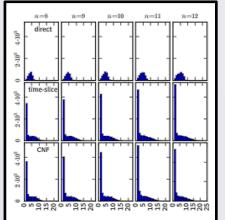

# **Embedding of one JSP instance**

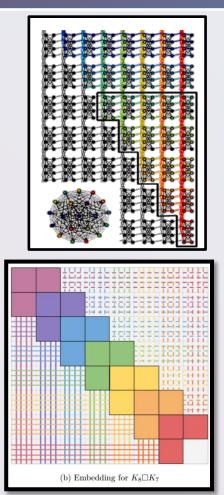


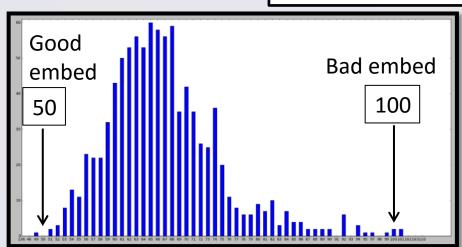

## **Topological aspect of embedding**

#### D-Wave Heuristics (Cai et al.)

O'Gorman, B., Rieffel, E. G., Do, M., Venturelli, D., & Frank, J. "Compiling planning into quantum optimization problems: a comparative study." Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS-15) (2015)





## **Topological aspect of embedding**

#### D-Wave Heuristics (Cai et al.)

O'Gorman, B., Rieffel, E. G., Do, M., Venturelli, D., & Frank, J. "Compiling planning into quantum optimization problems: a comparative study." Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS-15) (2015)







# **Embedding bottleneck**

### $heta NM[T- heta M\langle p angle+1]$ Logical Qubits

#### **Current heuristics**

**Previous D-Wave** 50% of 4x4

**Current D-Wave** 20% of 5x5

**Next D-Wave (?)** 10% of 6x6

| $[\tau_{min},\tau_{max}]$ | N=M | C8x8x4  | C12x12x4  | C++12x12x4 | C16x16x4  | C12x12x8  |
|---------------------------|-----|---------|-----------|------------|-----------|-----------|
| [1, 3]                    | 3   | 98 (98) | 100 (100) | 100 (100)  | 100 (100) | 100 (100) |
| [1, 3]                    | 4   | 48 (17) | 75 (60)   | 77 (63)    | 91 (89)   | 100 (100) |
| [1, 3]                    | 5   | 15      | 20        | 21         | 30 (6)    | 68 (54)   |
| [1, 3]                    | 6   | 3       | 5         | 5          | 6         | 12        |
| [1, 3]                    | 7   |         | 1         | 1          | 1         | 2         |
| [1, 3]                    | 8   |         |           |            |           |           |

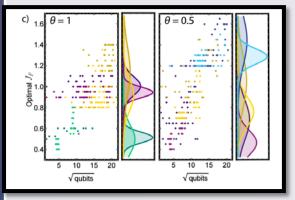
Embeddability table for square instances

Heuristic embedding not scalable...

Need  $\approx$  6000 logical qubits for intractability.  $\implies \approx 1 \text{ M physical}$ 

| Size              | Time             | Best method |  |  |  |  |  |
|-------------------|------------------|-------------|--|--|--|--|--|
| 5x5<br>τ=[1,20]   | 0.015<br>seconds | Scip        |  |  |  |  |  |
| 10x10<br>τ=[1,20] | 2.75<br>seconds  | Gurobi      |  |  |  |  |  |
| 15x15<br>τ=[1,20] | 2430<br>seconds  | Cplex (40%) |  |  |  |  |  |

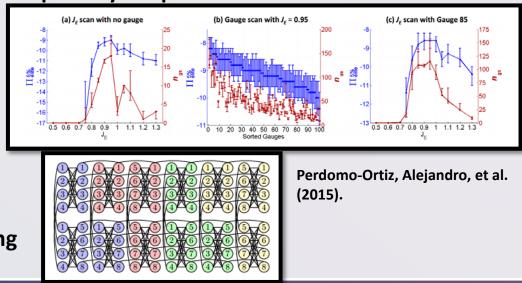
Ku, W.-Y. & Beck J.C., Computers & Operations Research, 73, 165-173, 2016.


# **Empirical approaches to parameter setting**

#### Constant J<sub>F</sub>

Rieffel, E., Venturelli, D., O'Gorman, B., Do, M. B., Prystay, E. M., & Smelyanskiy (2015)

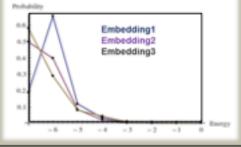
#### Constant J<sub>F</sub>, based on statistics


Venturelli, Davide, Dominic JJ Marchand, and Galo Rojo (2016)



Trummer, I., & Koch, C. Multiple Query (2016)

**Inspired by Classical Reasoning** 

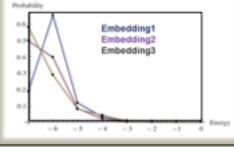

### **Empirically adaptive**



# **Running and Analyzing**

#### 3 Run the problem many times and collect statistics

Use symmetries, permutations, and error correction to eliminate the systemic hardware errors and check the solutions



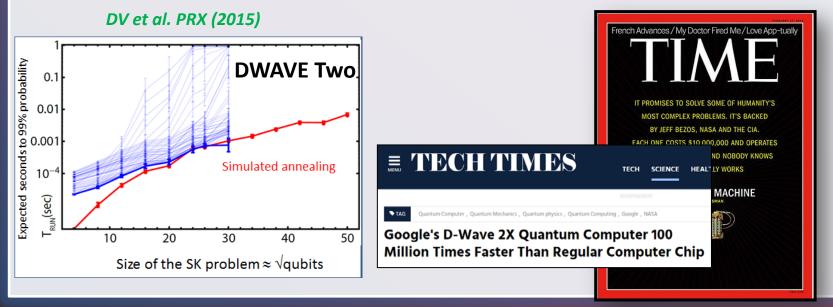

- Probability to find the ground state after 1 annealing run (20µs):
   P<sub>GS</sub>
- Probability to find the ground state after R repetitions:
   P<sup>X</sup> = 1-(1-P<sub>GS</sub>)<sup>R</sup>
- Expected number of repetitions to solve with 99% prob:
   R<sup>99</sup> = log(0.01)/log(1-P<sub>GS</sub>)

# **Running and Analyzing**

#### 3 Run the problem many times and collect statistics

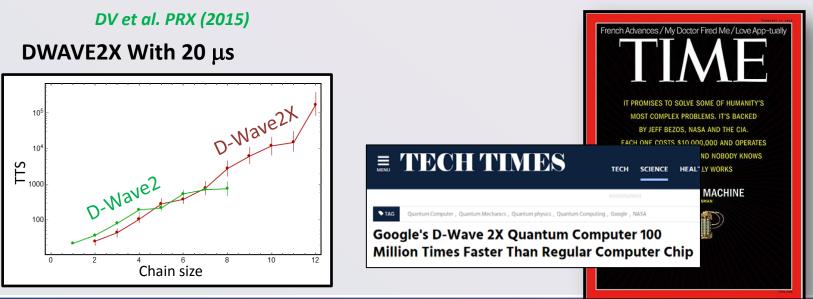
Use symmetries, permutations, and error correction to eliminate the systemic hardware errors and check the solutions



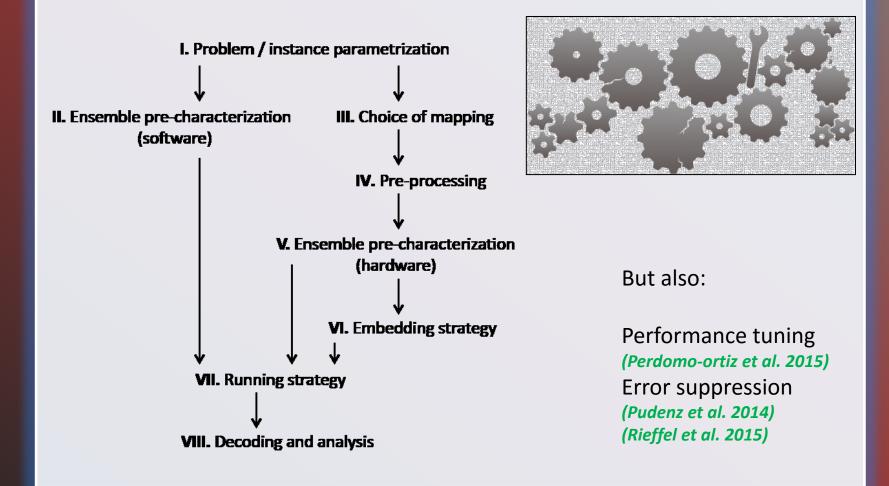

- Probability to find the ground state after 1 annealing run (20µs):
   P<sub>GS</sub>
- Probability to find the ground state after R repetitions:
   P<sup>X</sup> = 1-(1-P<sub>GS</sub>)<sup>R</sup>
- Expected number of repetitions to solve with 99% prob:
   R<sup>99</sup> = log(0.01)/log(1-P<sub>GS</sub>)

#### **But Also:**

- # different solutions found at equal time.
- Best approximate solution found at equal time.

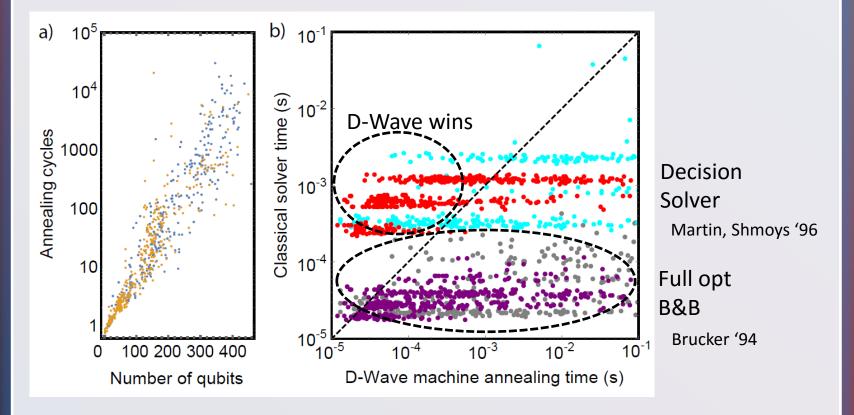

# **Hype and Reality**

- NO SPEEDUP PROVEN NOT EVEN IN THEORY. SCALING  $\approx$  SQA / PIQMC
- "PREFACTOR" 10<sup>8</sup> SPEEDUP AGAINST SIMULATED ANNEALING ON CRAFTED INSTANCES DESIGNED AGAINST S.A.
- SOME EARLY EVIDENCE OF UNIQUE SAMPLING (MACHINE LEARNING, ETC.)
- AT MOST "COMPETITIVE" WITH 1-CORE ON NATIVE/EMBEDDED PROBLEMS\*
- THE SCALING IS DIFFICULT TO OBSERVE FOR SMALL N




# **Hype and Reality**

- NO SPEEDUP PROVEN NOT EVEN IN THEORY. SCALING  $\approx$  SQA / PIQMC
- "PREFACTOR" 10<sup>8</sup> SPEEDUP AGAINST SIMULATED ANNEALING ON CRAFTED INSTANCES DESIGNED AGAINST S.A.
- SOME EARLY EVIDENCE OF UNIQUE SAMPLING (MACHINE LEARNING, ETC.)
- AT MOST "COMPETITIVE" WITH 1-CORE ON NATIVE/EMBEDDED PROBLEMS\*
- THE SCALING IS DIFFICULT TO OBSERVE FOR SMALL N




# **Example of running strategy (JSP)**



### **D-Wave Two Results**

Time to solve at 99% probability  $R^{99} = \log(0.01)/\log(1-P_{GS})$ 



### **Improvements and outlooks**

### **SHORT TERM (2016-2017)**

- □ BETTER EMBEDDING TECHNIQUES
  - □ NEW WORKS ON SEMI-DETERMINISTIC MILP EMBEDDINGS
  - □ PARAMETER SETTING CAN BE IMPROVED (x10 perfomance)
- - □ RELAXATIONS, DECOMPOSITIONS
- □ APPROXIMATE SOLUTIONS?

Speed can be improved by 50-100x

## Improvements and conservative outlooks

### SHORT TERM (2016-2017)

- **BETTER EMBEDDING TECHNIQUES** 
  - □ NEW WORKS ON SEMI-DETERMINISTIC MILP EMBEDDINGS
  - □ PARAMETER SETTING CAN BE IMPROVED (x10 perfomance)
- HYBRID APPROACHES
   RELAXATIONS, DECOMPOSITIONS
- □ APPROXIMATE SOLUTIONS?

#### **MEDIUM TERM (2018-2020)**

- □ BETTER ARCHITECTURE, N□ 5000
- □ MORE COMPLEX SCHEDULE
  - □ INCREASED QUANTUMNESS
  - □ INTERPLAY WITH DISSIPATION

Speed can be improved by 50-100x

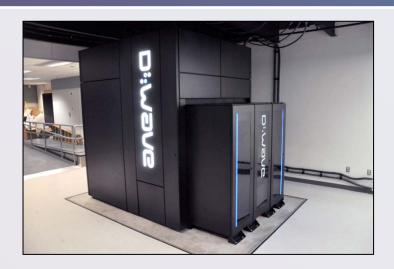
## Improvements and conservative outlooks

### SHORT TERM (2016-2017)

- BETTER EMBEDDING TECHNIQUES
  - PARAMETER SETTING CAN BE IMPROVED (x10 perfomance)
- HYBRID APPROACHES
   RELAXATIONS, DECOMPOSITIONS
- □ APPROXIMATE SOLUTIONS?

### **MEDIUM TERM (2018-2020)**

- □ BETTER ARCHITECTURE, N□ 5000
- □ MORE COMPLEX SCHEDULE
  - □ INCREASED QUANTUMNESS
  - □ INTERPLAY WITH DISSIPATION


Speed can be improved by 50-100x



Problems that take 10min could be solved in milliseconds?

## **Research Opportunity on D-Wave 2X**

- Oak Ridge National Laboratory (USA)
- Scuola Normale Superiore di Pisa (ITALY)
- Swiss Fed. Inst. Tech Lausanne (SWITZERLAND)
- Mississippi State University (USA)
- University of British Columbia (CANADA)
- Technológico de Monterrey (MEXICO)
- University of California, San Diego (USA)
- University of Southern California (USA)
- University of Verona (ITALY)
- University of Oxford (UK)
- TATA Consulting Services (India)
- Fiat Physica (USA)
- 1-Qbit (CANADA)
- QC-Ware (USA)
- QX-Branch (USA)
- Lockheed Martin (USA)
- Carnegie Mellon University (USA)
- Cornell University (USA)



1097 Qubits 5 μs min anneal time 24/7 support

### http://www.usra.edu/quantum/rfp

(5 pages proposal, training)

davide.venturelli@nasa.gov