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• A Hybrid Quantum-Classical Approach to Solving Scheduling Problems . Tony T. Tran, Minh Do, 
Eleanor Rieffel, Jeremy Frank, Zhihui Wang, Bryan O'Gorman, Davide Venturelli and Chris Beck. In 
Symposium on Combinatorial Search (SoCS-16), 2016. 
 

• Explorations of Quantum-Classical Approaches to Scheduling a Mars Lander Activity Problem . Tony 
T. Tran, Zhihui Wang, Minh Do, Eleanor G. Rieffel, Jeremy Frank, Bryan O’Gorman, Davide 
Venturelli, and J. Christopher Beck. In AAAI-16 Workshop on Planning for Hybrid Systems. 
 

• Job Shop Scheduling Solver based on Quantum Annealing. Davide Venturelli, Dominic Marchand, 
Galo Rojo. In ICAPS-16 workshop Constraint Satisfaction Techniques for Planning and Scheduling 
(COPLAS-16) 
 

• A case study in programming a quantum annealer for hard operational planning problems Eleanor 
Rieffel, Davide Venturelli, Bryan O’Gorman, Minh B. Do, Elicia Pristay, Vadim Smelyanskiy. Quantum 
Inf Process (2015) 14: 1 
 

Upcoming on the arXiv 
• T. Tran, DV et al. (2016) 
• B. Pokharel, E. Rieffel, DV et. al (2016) 
• I. Trummer, DV et. al (2016) 
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Universal Quantum Computing  
(Gate Model) 

 

• ~30 years of theoretical research 
• ~20 years of experimental research 
+ Quadratic speedup in database search 

(Grover search) 
+ Exponential speedup in cryptanalysis 

(Shor’s factoring) 
+ Killer app: Quantum Simulations 
- Around 10 qubits working across 

technologies 
- ~1M physical qubits required for real 

world applications 
- 15+ years before fully integrated system 
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Quantum Optimization  
(Annealing) 

 

• ~15 years of theoretical research 
• ~7-8 years experiments 
+ General approach for all combinatorial 

optimization problems 
+ Other groups are creating machines  

(Google, MIT Lincoln Lab.) 
+ 1000+ qubit processors available 
+ ~10K physical qubits required for useful 

problems  
- Speedup and effect of noise/temperature 

largely unknown 
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Quantum Optimization  
(Annealing) 

 

• ~15 years of theoretical research 
• ~7-8 years experiments 
+ General approach for all combinatorial 

optimization problems 
+ Other groups are creating machines  

(Google, MIT Lincoln Lab.) 
+ 1000+ qubit processors available 
+ ~10K physical qubits required for useful 

problems  
- Speedup and effect of noise/temperature 

largely unknown A 2N     B eN 

Best hope! 

C 
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Simulated Annealing  
(Kirkpatrick et al., 1983) 
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Simulated Annealing  
(Kirkpatrick et al., 1983) 
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Bit flips activated by temperature 

3 Key differences: 
 
 
1) Superposition of bit-strings (tunneling) 
2) Energy landscape changes over time 
3) Equilibration and Adiabatic Theorem 
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  Quantum Annealing  
(Finnila et al. 1994, Kadawaki&Nishimori 1998, Farhi et.al. 2001) 

E({z},τ=1) 
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{z}=configurations in  
solutions space  

E({z}): Free energy 
Surface (cost funct.) 

Time, τ 

tunneling 

Bit flips activated by tunneling 
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  Quantum Annealing  
(Finnila et al. 1994, Kadawaki&Nishimori 1998, Farhi et.al. 2001) 

E({z},τ=1) 
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E({*}, τ<1) E({*}, τ=0) 

{z}  {z}  

{z}=configurations in  
solutions space  

E({z}): Free energy 
Surface (cost funct.) 

Time, τ 

tunneling 

Bit flips activated by tunneling 

 Not adiabatic:  
 “Strong” noise 
 “High” temperature (12mK) 

 
 Only a single annealing protocol 

 “Slow” speed (5µs) 
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Paradigmatic Theory of Scheduling Problems 

• Truly random ensembles 
• Known mappings and “phase transitions” 
• Solid classical algorithmics and literature 
• “Easy” parametrization 
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Paradigmatic Theory of Scheduling Problems Real world scheduling problems 

• Truly random ensembles 
• Known mappings and “phase transitions” 
• Solid classical algorithmics and literature 
• “Easy” parametrization 

• Correlated, not random 
• Hardness is very much instance dependent 
• Classical approaches are ad-hoc heuristics 
• Can feature convoluted structure 
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Machine Environment Job Characteristics Objective Function 
Processing times, ordering, 
Batching, due dates, validity 
windows … 

 

Graphical Representation of a 
schedule and of a problem: 

Shared Resources with finite 
capacities:  
Regions of Space, Regions of 
time, Shared Equipment.. 
 

Metric that determines best 
solutions: 
Minimize total time, Maximize 
total priority, Maximize total 
utilizations 

 
R10|pij=[0,…,τ], rj, dj|ΣiwiUi 

Example of notation for Alternative Resource Scheduling 

pij ri di 

wi 

Example: 
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Phase Transitions 

What parameters 
make instances truly 
hard? 

No sol 

Cluster of 
sols 
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Phase Transitions Tailored Algorithms 

What parameters 
make instances truly 
hard? 

What is the best possible 
known way to solve 
these hard instances? 

No sol 

Cluster of 
sols 
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Phase Transitions Tailored Algorithms Commercial Solvers 

What parameters 
make instances truly 
hard? 

What is the best possible 
known way to solve 
these hard instances? 

What is the current 
way to solve these 
instances? 

No sol 

Cluster of 
sols 
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See Taillard Instances, standard 
benchmarks, found in OR library 

(Rieffel, Venturelli, Do, Hen, Frank 2013)  

• Parametrize an ensemble of instances 
 

• Find an “easy-hard-easy” pattern 
 

• Check for exponential scaling in N 
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W. Ku and J. Beck, technical report, 
Univ. of Toronto (2014). 

Commercial Solvers needs to 
be properly tuned to take 
advantage of parallelism and 
most recent features. 
 
Dash, S. (2013). A note on QUBO 
instances defined on Chimera 
graphs.arXiv preprint arXiv:1306.1202. 
 
(D-Wave was benchmarked ≈20x faster 
than what it was possible) 

Other example: for diagnostics we used HyDE… 
Programs of Xerox PARC 
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E(001010011) 
E(101110010) 
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v 

E(001010011) 
E(101110010) 

• Coloring 
• Single Machine Scheduling 
• Multiple Machines 
• Job-Shop 
• Other scheduling 
• Other hybrid approaches 
 

LBBD 

Complete 
Tree search 

Decision/ 
Opt decomp 
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Only one  
Color per  
node: 

Edge constraints (an 
edge cannot connect 
the same colors): 

Mapping the problem takes 
only 3N 

From beigel Eppstein (2000) 

HARD CONSTRAINT 

SOFT CONSTRAINT 
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P1 =3  

P2 =2  

time 

r2 d2 

Only the starting points are 
represented by a bit. 

Time-Indexed Formulation: Xit=1 if job executed at time t or =0 otherwise 
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P1 =3  

P2 =2  

time 

r2 d2 

This generates fully-connected 
cliques: see embedding talk. 

∆Ha = Σi (Σt xit - 1)2 
Jobs needs to be scheduled only once: 

Only the starting points are 
represented by a bit. 

Time-Indexed Formulation: Xit=1 if job executed at time t or =0 otherwise 
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P1 =3  

P2 =2  

time 

r2 d2 

This generates fully-connected 
cliques: see embedding talk. 

∆Ha = Σi (Σt xit - 1)2 
Jobs needs to be scheduled only once: 

Only the starting points are 
represented by a bit. 

Time-Indexed Formulation: Xit=1 if job executed at time t or =0 otherwise 

∆Ha = Σi ½Σtt’ sit sit’  +… xit= ½(sit+1) 
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Time-Indexed Formulation: Xit=1 if job executed at time t or =0 otherwise 

P1 =3  

P2 =2  

time 

r2 d2 

Specific Job-dependent “setup 
times” can be trivially added the 
same way. 

∆Hb =  ½ Σit Σj≠i (Στ sit sj(t+τ) ) + … 

Jobs needs avoid conflict, considering the processing times: 
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Intersecting Cliques 

Xit Xitm (introducing the machine index) 

∆Hd = − Σit (Σm xitm + α - C)2 α is a “slack” variable. 
∆Hd >0 if Σm xitm >C 

α 

C=1 
M=3 

25 



• Typically required N*M*L qubits, with L=[di-ri] before pre-processing. 

• N*M cliques of L size, intersecting N*L cliques of size ≈M 

• Each δτ overlap of R tasks also generates cliques of size ≈Rδτ 

• Reset times just add connections (consider all N(N-1)/2 pairs) 

• Capacities introduce ancilla slack qubits and possible precision requirements. 

Naturally quadratic fomulation: 
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• Typically required N*M*L qubits, with L=[di-ri] before pre-processing. 

• N*M cliques of L size, intersecting N*L cliques of size ≈M 

• Each δτ overlap of R tasks also generates cliques of size ≈Rδτ 

• Reset times just add connections (consider all N(N-1)/2 pairs) 

• Capacities introduce ancilla slack qubits and possible precision requirements. 

Naturally quadratic fomulation: 

MASTER SUBPROBLEM(S) 

Pre-processing and decompose 
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(Tran, Wang, Do, Rieffel, Frank, 
O’Gorman, Venturelli, Beck 2015) 
 

• Different initial battery levels 
• Different battery capacity 
• Different martian weather 

Instances 
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Discrete schedule 
feasibility 

Continuous 
Constraint 

Nbits=52 
Nqubits=764 

1. Allows continuous constraints 
2. Allows complex battery models 
3. Reduces number of variables 
4. Use the annealer in a complete 

search 
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Full configuration 

To be explored 

Discrete schedule 
feasibility 

Continuous 
Constraint 

Nbits=52 
Nqubits=764 1. Run Annealer K times 

2. Check Battery constraint on E=0 
solutions 

3. Build a search tree and identify the 
non-returned solutions (ordering) 

4. Prune and explore the tree branches 
with dedicated annealing runs 

1. Allows continuous constraints 
2. Allows complex battery models 
3. Reduces number of variables 
4. Use the annealer in a complete 

search 
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pr
io

rit
y 

time 

• M� 1 Machines 
• N � 1 Jobs 
• Overlapping windows [rj, dj] 
• Machine-dependent processing times pmj 
• Machine-dependent execution cost cmj 

How to distribute the N jobs 
among the M machines to 
minimize the cost? 
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time 

• M� 1 Machines 
• N � 1 Jobs 
• Overlapping windows [rj, dj] 
• Machine-dependent processing times pmj 
• Machine-dependent execution cost cmj 

How to distribute the N jobs 
among the M machines to 
minimize the cost? 

MASTER: 
Relaxed Problem 
Assign Jobs 

SUBPROBLEM(S) 
Each is a single machine 
assignment: check legit 

Pre-processing and decompose 
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Aeronautics  applications 

Resource allocation of assets 

Computing  applications 

1st  operation 2nd   operation 3rd    operation 

JOB 0 Machine 0 for 3t Machine 1 for 2t Machine 2 for 2t 

JOB 1 Machine 0 for 2t Machine 2 for 1t Machine 1 for 4t 

JOB 2 Machine 1 for 3t Machine 2 for 3t Machine 0 for 0t 

Feasible schedule with makespan 12 

Feasible schedule with makespan 11 
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Log2(T) calls in the worst case 

For N=M=2<p>=50 
Knowing the distribution I need 
less than 5 calls on average, 
instead of ≈20 
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N M T bits required 

1st  operation 2nd   operation 3rd    operation 

JOB 0 Machine 0 for 3t Machine 1 for 2t Machine 2 for 2t 

JOB 1 Machine 0 for 2t Machine 2 for 1t Machine 1 for 4t 

JOB 2 Machine 1 for 3t Machine 2 for 3t Machine 0 for 0t 
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𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 1 If job n is executing on machine m at time t 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 0 otherwise 

N M T bits required 

1st  operation 2nd   operation 3rd    operation 

JOB 0 Machine 0 for 3t Machine 1 for 2t Machine 2 for 2t 

JOB 1 Machine 0 for 2t Machine 2 for 1t Machine 1 for 4t 

JOB 2 Machine 1 for 3t Machine 2 for 3t Machine 0 for 0t 
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𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 1 If job n is executing on machine m at time t 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 0 otherwise 

N M T bits required 

1st  operation 2nd   operation 3rd    operation 

JOB 0 Machine 0 for 3t Machine 1 for 2t Machine 2 for 2t 

JOB 1 Machine 0 for 2t Machine 2 for 1t Machine 1 for 4t 

JOB 2 Machine 1 for 3t Machine 2 for 3t Machine 0 for 0t 

� �𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 1
𝑡𝑡

2

𝑛𝑛,𝑚𝑚

 

This image cannot currently be displayed.
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N M T bits required 

N M T bits required 

- N M (M <p> -1) bits 

Simple execution time bounds computation 
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N M T bits required 

More advanced pre-processing (EdgeFinding, TaskInterval...) 

O(N2M2T logN) complexity 
(Carlier and Pinson 1990) 

2 parallel runs. 
Easier embedding. 

N=4 M=4 
T=7 
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PRE-PROCESSING 

DECOMPOSITION SEARCHING 

 Polynomial algorithms of “shaving” and “pruning” 
 Attempts to solve in polynomial time to eliminate easy instances 

 Decomposing the problem in smaller sub-problems 
 Explore the tree: exploration vs exploitation tradeoff 

Use statistical information due to the pre-characterization of instance ensemble 
Perhaps exploit the “unique sampling” capabilities of the annealer? 
 

e.g. turning an optimization problem into a series of decision calls 

e.g. evaluating trivial simplifications where the job execution choices are obvious 
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Air-Traffic-Management 

Packet-Switching, Advisory 
Problems, Asset Allocation… 

10 packets 
7 packets 

21 packets 

• Planning (Rieffel et al.) 
• Runway Landing Sequencing (Z.Wang et al.) 
• Lagrangian Dual (Ronagh et al.) 
• Database Query Optimization (Trummer et al.) 
• Iterative Variable fixing heuristics (Karimi et al.) 

See Stollenwerk! 

Not discussed.. 
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Si = ±1 
hi ≈ [-1, 1] 
Ji ≈ [-1, 1] 

≈10 values 

≈10 values 
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Assign “colors” to connected sets of qubits 

(nH hardware qubits) 
 

(nP logical bits) 
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a X1 X2 + b X2 X3 + c X1 X3 

a 
b 

c 
X1 

X2 

X3 

QUBO FORMULA 
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Quantum Ferromagnet 

a X1 X2 + b X2 X3 + c X1 X3 

a 
b 

c 
X1 

X2 

X3 

AFTER EMBEDDING 

QUBO FORMULA 

49 



Quantum Ferromagnet 

AFTER EMBEDDING 

What is a good value of the internal 
couplings J? 

- J Σi (2xi-1)(2xi+1-1) 

 Classical Energy landscape 
more rugged 

 Emergence of Quantum 
Phase Transitions 

 Precision issues 
(misspecification) 

(DV et al, PRX 2015) 
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Quantum Ferromagnet 
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Quantum Ferromagnet 

|JF| 

-1 
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|JF| 

-1 

-max(J) max(J) 
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≈O(N2) 
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50 100 

Bad embed 
Good  
embed 

O’Gorman, B., Rieffel, E. G., Do, 
M., Venturelli, D., & Frank, J. 
“Compiling planning into 
quantum optimization problems: 
a comparative study.” Constraint 
Satisfaction Techniques for 
Planning and Scheduling 
Problems (COPLAS-15) (2015) 

D-Wave Heuristics  
(Cai et al.) 
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50 100 

Bad embed 
Good  
embed 

O’Gorman, B., Rieffel, E. G., Do, 
M., Venturelli, D., & Frank, J. 
“Compiling planning into 
quantum optimization problems: 
a comparative study.” Constraint 
Satisfaction Techniques for 
Planning and Scheduling 
Problems (COPLAS-15) (2015) 

D-Wave Heuristics  
(Cai et al.) 
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Logical Qubits 

Previous D-Wave 
50% of 4x4  
 
Current D-Wave 
20% of 5x5 
 
Next D-Wave (?) 
10% of 6x6 

Current heuristics 

Heuristic embedding 
not scalable… 

Size Time Best method 

5x5 
τ=[1,20] 

0.015 
seconds 

Scip 

10x10 
τ=[1,20] 

2.75 
seconds 

Gurobi 

15x15 
τ=[1,20] 

2430 
seconds 

Cplex (40%) 
Need ≈ 6000 logical qubits for intractability. 
 ≈ 1 M physical 

Ku, W.-Y. & Beck J.C.,  Computers & Operations Research, 73, 165-173, 2016. 
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Venturelli, Davide, Dominic JJ Marchand, and Galo Rojo (2016) 

Perdomo-Ortiz, Alejandro, et al. 
(2015). 

Rieffel, E., Venturelli, D., O’Gorman, B., Do, M. B., Prystay, E. M., & 
Smelyanskiy (2015) 

Trummer, I., & Koch, C. Multiple Query 
(2016) 

Inspired by Classical Reasoning 

Empirically adaptive 

Constant JF, based on statistics 

Constant JF 
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• Probability to find the ground 
state after 1 annealing run (20µs):    

     PGS 
 

• Probability to find the ground 
state after R repetitions:        
   PX = 1-(1-PGS)R 
 

• Expected number of repetitions 
to solve with 99% prob:     

  R99 = log(0.01)/log(1-PGS) 
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• Probability to find the ground 
state after 1 annealing run (20µs):    

     PGS 
 

• Probability to find the ground 
state after R repetitions:        
   PX = 1-(1-PGS)R 
 

• Expected number of repetitions 
to solve with 99% prob:     

  R99 = log(0.01)/log(1-PGS) 

But Also: 
• # different solutions found at equal time. 
• Best approximate solution found at equal time. 
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DV et al. PRX (2015) 

DWAVE Two 

• NO SPEEDUP PROVEN NOT EVEN IN THEORY. SCALING ≈ SQA / PIQMC 
• “PREFACTOR” 108 SPEEDUP AGAINST SIMULATED ANNEALING ON CRAFTED 

INSTANCES DESIGNED AGAINST S.A. 
• SOME EARLY EVIDENCE OF UNIQUE SAMPLING (MACHINE LEARNING, ETC.) 
• AT MOST “COMPETITIVE” WITH 1-CORE ON NATIVE/EMBEDDED PROBLEMS* 
• THE SCALING IS DIFFICULT TO OBSERVE FOR SMALL N 
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• “PREFACTOR” 108 SPEEDUP AGAINST SIMULATED ANNEALING ON CRAFTED 

INSTANCES DESIGNED AGAINST S.A. 
• SOME EARLY EVIDENCE OF UNIQUE SAMPLING (MACHINE LEARNING, ETC.) 
• AT MOST “COMPETITIVE” WITH 1-CORE ON NATIVE/EMBEDDED PROBLEMS* 
• THE SCALING IS DIFFICULT TO OBSERVE FOR SMALL N 

DV et al. PRX (2015) 

Chain size 

TT
S 

DWAVE2X With 20 µs 
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But also: 
 
Performance tuning 
(Perdomo-ortiz et al. 2015) 
Error suppression 
(Pudenz et al. 2014) 
(Rieffel et al. 2015) 
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R99 = log(0.01)/log(1-PGS) 

D-Wave wins 

Full opt 
B&B 

Decision 
Solver 

Time to solve at 99% probability 

Brucker ‘94 

Martin, Shmoys ‘96 
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 BETTER EMBEDDING TECHNIQUES 
 NEW WORKS ON SEMI-DETERMINISTIC MILP EMBEDDINGS 
 PARAMETER SETTING CAN BE IMPROVED (x10 perfomance) 

 HYBRID APPROACHES 
 RELAXATIONS, DECOMPOSITIONS 

Speed can be improved by 50-100x 

 APPROXIMATE SOLUTIONS? 

SHORT TERM (2016-2017) 

67 



 BETTER EMBEDDING TECHNIQUES 
 NEW WORKS ON SEMI-DETERMINISTIC MILP EMBEDDINGS 
 PARAMETER SETTING CAN BE IMPROVED (x10 perfomance) 

 HYBRID APPROACHES 
 RELAXATIONS, DECOMPOSITIONS 

Speed can be improved by 50-100x 

 APPROXIMATE SOLUTIONS? 

SHORT TERM (2016-2017) 
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 MORE COMPLEX SCHEDULE 

 INCREASED QUANTUMNESS 
 INTERPLAY WITH DISSIPATION 
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 BETTER EMBEDDING TECHNIQUES 
 NEW WORKS ON SEMI-DETERMINISTIC MILP EMBEDDINGS 
 PARAMETER SETTING CAN BE IMPROVED (x10 perfomance) 

 HYBRID APPROACHES 
 RELAXATIONS, DECOMPOSITIONS 

Speed can be improved by 50-100x 

 APPROXIMATE SOLUTIONS? 

SHORT TERM (2016-2017) 

MEDIUM TERM (2018-2020) 
 BETTER ARCHITECTURE, N� 5000 
 MORE COMPLEX SCHEDULE 

 INCREASED QUANTUMNESS 
 INTERPLAY WITH DISSIPATION Problems that take 10min 

could be solved in 
milliseconds? hope 
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http://www.usra.edu/quantum/rfp 
( 5 pages proposal, training ) davide.venturelli@nasa.gov 

• Oak Ridge National Laboratory (USA)  
• Scuola Normale Superiore di Pisa (ITALY)  
• Swiss Fed. Inst. Tech Lausanne (SWITZERLAND)  
• Mississippi State University (USA)  
• University of British Columbia  (CANADA) 
• Technológico de Monterrey (MEXICO)  
• University of California, San Diego (USA) 
• University of Southern California (USA) 
• University of Verona (ITALY) 
• University of Oxford (UK) 
• TATA Consulting Services (India) 
• Fiat Physica (USA) 
• 1-Qbit (CANADA) 
• QC-Ware (USA) 
• QX-Branch (USA) 
• Lockheed Martin (USA) 
• Carnegie Mellon University (USA) 
• Cornell University (USA) 

1097 Qubits 
5 µs min anneal time 
24/7 support 
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