
Getting Started

Summer School on Fire Dynamics Modeling 2017

Lukas Arnold

Contents:

1. Virtual Machine (VM)

2. FDS

3. Linux

4. Python

1. Virtual Machine (VM)

1. Virtual Machine (VM)

1.1 Basics

1.2 Guest System

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 3

1. Virtual Machine (VM), Basics

1. Virtual Machine (VM)

1.1 Basics

1.2 Guest System

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 4

1. Virtual Machine (VM), Basics

Virtual machines

Virtual machines (VM) emulate a computer and allow to run a guest operating
system (OS) within a host system.

With VMs it is possible to have multiple instances of an OS running, which
may for example have individual and sole tasks.

We have prepared a VM with a Linux OS, here Manjaro Linux, with all
software needed for the summer school.

The image is available on USB drives (contact Ashish) and as a download link
(see emails).

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 5

1. Virtual Machine (VM), Basics

Virtual Box

I Virtual Box is a free and open source software to create, manage and run
VMs.

→ https://www.virtualbox.org

I The provided VM image can be imported via File / Import Appliance.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 6

https://www.virtualbox.org

1. Virtual Machine (VM), Basics

VM notes and hints

I Switch mouse / keyboard focus between host and guest via the ’Host key’,
see right bottom of a running VM

I A shared clipboard can be setup Devices / Shared Clipboard

I Snapshots alow to switch (while off) between states of the VM, create an
initial snapshot to be able to come back to the initial state

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 7

1. Virtual Machine (VM), Guest System

1. Virtual Machine (VM)

1.1 Basics

1.2 Guest System

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 8

1. Virtual Machine (VM), Guest System

Manjaro Linux

→ https://manjaro.org

I User name: summer

I Password: school, only needed for new software installation

→ Start VM

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 9

https://manjaro.org

1. Virtual Machine (VM), Guest System

firesss * scripts

The VM comes with a few handy scripts to ease your setup:

I firesss udpate bin: updates the school’s scripts

I firesss help: prints a short help message with a few usefull lines to grep

I firesss preparessh: sets up you ssh environment to login to JURECA

I firesss getmaterial: downloads teaching material

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 10

1. Virtual Machine (VM), Guest System

School material

Using the VM, we have prepared the firesss getmaterial command, which
grabs the current version of the selected material and puts it into a new
directory.

→ Demo on VM

Useage of firesss getmaterial:

> firesss_getmaterial -h
Usage: firesss_getmaterial <lecture number: 00 ... 09>

-v, --verbose : forward all output to console
-a, --all : get all lectures

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 11

1. Virtual Machine (VM), Guest System

Software

I Browser: Firefox

I Text editors: mousepad, emacs, gedit

I Python: version 3.6, including all needed modules

I FDS+SVM: recent repository clone, aliases set to fds and smv

I git + gcc: to grab and compile FDS form the GitLab repository

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 12

2. FDS

2. FDS

2.1 Binary Installation

2.2 Installation from source

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 13

2. FDS, Binary Installation

2. FDS

2.1 Binary Installation

2.2 Installation from source

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 14

2. FDS, Binary Installation

Binary downloads at FDS-SMV webpage

Binary files for common OS are available here:

→ https://pages.nist.gov/fds-smv/downloads.html

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 15

https://pages.nist.gov/fds-smv/downloads.html

2. FDS, Installation from source

2. FDS

2.1 Binary Installation

2.2 Installation from source

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 16

2. FDS, Installation from source

Get the source code

The source code of FDS is currently hosted by GitHub:

→ https://github.com/firemodels/fds

It can be either

I downloaded as an archive file

I or cloned via git

To access the GitHub repositories, there exists a GUI application ’GitHub
Desktop’:

→ https://desktop.github.com

Note: We can offer git support / first steps on an individual basis during the
week. Just contact me.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 17

https://github.com/firemodels/fds
https://desktop.github.com

2. FDS, Installation from source

Compilation and linkage

In order to execute the source code, it needs to be translated to the target
CPU machine language. This is done by a compiler. The interaction with the
operating system (OS) and third party libraries is put together with the linker.

A common choice is the GNU compiler collection (GCC), which covers many
mainstream languages, including FORTRAN.

GCC is directly available on Linux and macOS systems, or can be added via the
package management software.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 18

2. FDS, Installation from source

Demo on the VM

cd
mkdir build_fds_demo
cd build_fds_demo

git clone https :// github.com/firemodels/fds.git .
cd Build/gnu_linux_64
sh make_fds.sh

./ fds_gnu_linux_64

Note: to make this executable globally available either the PATH variable must
be extended accordingly or an alias should be set.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 19

2. FDS, Installation from source

Compilation with MPI support

1. Install OpenMPI via the software manager

2. Change to the build directory mpi gnu linux 64

3. Invoke sh make fds.sh

4. Execute with the mpirun command

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 20

3. Linux

3. Linux

3.1 General

3.2 Command line

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 21

3. Linux, General

3. Linux

3.1 General

3.2 Command line

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 22

3. Linux, General

Basic idea of UNIX / Linux

The UNIX based operating systems (OS) have the following philosophy:

1. write computer programs, that solve a single task, but very efficient

2. write computer programs, such that they can work together

3. write computer programs, that process simple text streams

Therefore the whole OS is a collection of a zoo of small specialised applications.
The combination of all of them creates a complex and mighty system.

The base system of an UNIX-like OS can be used with text based terminals.
However, most systems have a graphical system on top.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 23

3. Linux, General

History of UNIX / Linux

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 24

3. Linux, Command line

3. Linux

3.1 General

3.2 Command line

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 25

3. Linux, Command line

Introduction Unix shell

A Unix shell, or just shell, is a user interface to the UNIX OS. It is already a
highly abstracted layer to hide the kernel complexity.

The most popular shells are:

I C shell (csh)

I Bourne shell (sh)

I Bourne-Again shell (bash)

Note: In the following we will focus on the bash shell.

Note: ”Build-in” documentation to all relevant commands: man command.

Note: To open a terminal in the file manager, use the context menu.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 26

3. Linux, Command line

Environment variables

All shells provide variables to setup the execution environment. They are read
out as $AVAR and set as AVAR:

1 echo $USER
2 export OMP_NUM_THREADS =8

Some important environment variables are:

I PATH, list of directories

I USER, user name

I PWD, current directory

I HOME, user’s home directory

The command env lists all set environment variables.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 27

3. Linux, Command line

Command execution

A command or program is executed by typing its name:

evn

This must be either a build-in command, a program found in the PATH

environment or a direct reference to an executable file.

To execute a custom program in the current directory (not in PATH):

./a.out

Commands may be executed in background by appending a & at the end:

./a.out &

The command ps prints all running processes in current terminal and ps aux

shows all processes on the system.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 28

3. Linux, Command line

Wildcards

Wildcards are used to provide a matching pattern for the shell. The shell will
evaluate it and explicitly list the result.

Some common wildcards are:

I *: match everything

I ?: match any single character

I [list]: match any single character from list, here: l, i, s, t

Wildcards can be combined with constant strings and with each other.

List all files ending with .pdf:

ls *.pdf

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 29

3. Linux, Command line

Pipes and redirection

The output of programs is either to

I stdout: the normal program output

I stderr: error messages

In many cases it is useful to write the output into a file. This can be done via
redirections

I >: creates a new output file, overwrites old one

I >>: appends the output

Print all environment variables into a file:

env > env.log

To forward the output of an command to be the input of an other, pipes | are
used:

find . -mtime -15m -type f | grep -i info | wc -l

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 30

3. Linux, Command line

Command line

At the command line the user issues commands and executes programs.

Some features:

I use arrow keys to move in history

I ctrl+a / ctrl+e, move to begin / end of line

I ctrl+k / ctrl+u, delete from cursor to end / begin of line

I alt+b / alt+f, move backward / forward a word

I ctrl+r, search in history

I ctrl+c, terminate command

I ctrl+z, suspend command

I bg / fg, put suspended job to background / foreground

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 31

3. Linux, Command line

Changing directories

The current directory is changed via the cd command.

Invoking no arguments changes to the user’s home directory, otherwise the
target directory is specified.

There exist a couple of special directories (also handy for other commands):

I ~: the user’s home directory

I ~username: the home directory of user username

I .: this directory

I ..: above directory (root direction)

I -: last directory (cd command only)

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 32

3. Linux, Command line

Listing directory contents

The contents of a directory are displayed with ls. Without arguments it shows
the current directory, otherwise the target directory.

Some common options:

I --color=always, color output

I -l, long output, i.e. list permissions, data, size

I -a, list all files, i.e. also hidden (starting with a .)

I -h, show sizes human readable

List all files and sort w.r.t. the modification time:

ls -larth

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 33

3. Linux, Command line

Listing and changing access permissions

The access permissions can be shown with the ls command. The fist character
in the ls output is the type. The syntax of the following characters is as
follows:

To change the permissions the command chmod is used. The first argument is a
combination of permission target, permission modification and new permission:

I target, u: user, g: group, o: other

I modificator, +: add, -: remove

I permission, r: read, w: write, x: execute

To change the permissions in all subdirectories use the -R.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 34

3. Linux, Command line

Listing files

There exist a couple of ways to list files:

I cat: prints file content to terminal

I less: print content and allows to scroll and search, quit with q

I head: prints the first lines of a file

I tail: prints the last lines, option -f follows the file change

Note: all of the above commands are highly configurable.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 35

3. Linux, Command line

Copy and link files

A simple file copy is done with cp and may be executed recursively -r.

There exist two types of links that can be used:

I hard links ln

I soft links: ln -s

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 36

3. Linux, Command line

Find files

Searching files is done with the find command. It has a lot of options, some
common scenarios are:

I find all files ending with stat in home directory:

find $HOME -name *stat

I find all files that have been modified in the last 24 hours (in home
directory):

find $HOME -mtime 0

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 37

3. Linux, Command line

Find content in files

To search file’s content, the grep command is used.

The fist argument is the search string the second the files to be searched in.
Some common options:

I -r: recursive search

I -i: case insensitive search

The following example searches for the string fire in all files:

grep -i fire *

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 38

3. Linux, Command line

Pattern based search and replace

A common task is to search and replace the content of a file. This can be done
with the sed command.

It takes regular expressions as arguments and processes a file.

To change the string lukas to matthias in a file at all occurrences:

sed ’s/lukas/matthias/g’ in.file

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 39

3. Linux, Command line

Creating tar-balls

To create a archive of files, the tar command is a common tool.

The major options are:

I -c / -x, create / extract mode

I -f, specify output / input file

I -z, compress mode

I -t, list contents

Create a tar-ball out of a directory

tar -cf dir.tar dir/

Extract a compressed tar-ball

tar -xzf files.tgz

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 40

3. Linux, Command line

Quick overview – vi

A common text based editor is vi. Here is a quick introduction to do simple
editing:

1. open the file with vi file.dat

2. enter edit mode by pressing i

3. do the editing

4. press esc to end edit mode

5. press :w to save the file

6. press :q to quit

7. to quit without saving, press :q!

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 41

3. Linux, Command line

Quick overview – emacs

An other popular and also very powerful editor is emacs. A quick introduction:

1. open a file with emacs file.dat

2. start editing

3. save file by pressing ctrl-x ctrl-s

4. exit email ctrl-x ctrl-c

5. to abort a command ctrl-g

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 42

3. Linux, Command line

Connecting to remote servers via ssh

To connect to modern supercomputer, you have to use ssh with a
public-private key encryption.

The connection syntax is as follows

ssh user@server

The configuration files and public-private keys are stored in ~/.ssh

To ease a frequently used connection, the config file may by customised, e.g.

1 Host jureca
2 Hostname jureca.fz-juelich.de
3 User train115
4 IdentityFile ~/.ssh/id_train115

Remote file copy (in both directions) is done with scp:

scp file.dat user@server:~

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 43

3. Linux, Command line

Access the internet

To download files or ”access” websites the wget command may be used.

wget URI

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 44

3. Linux, Command line

Shell configuration files

To setup an environment at every shell startup, configuration files (.bashrc,
.bash profile, .profile) may be used. All the commands listed in the
config files are executed.

Common examples:

I set aliases: alias lt=’ls -larth’

I export variables:

export FZJSVN=’https://svn.version.fz-juelich.de’

I extend path variables: export PATH=$HOME/Software/bin:$PATH

I read in other configuration files: source ~train199/setup firefoam.sh

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 45

4. Python

4. Python

4.1 General

4.2 Nutshell

4.3 Examples

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 46

4. Python, General

4. Python

4.1 General

4.2 Nutshell

4.3 Examples

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 47

4. Python, General

Read-only Python

This summer school is not a programming lecture. However, for scientific data
visualization and analysis, as well as for model development, programming skills
are handy.

Therefore we offer you the basics to be able to read Python scripts and
understand how they work. You can do all exercises without writing code by
yoursef, but you can us this school as a chance to start doing so.

If you see potential for your work, there is plenty of material on Python
programming in the world wide web.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 48

4. Python, General

Python

In contrast to computer programs, Python scripts are not executed, but
interpreted by a Python interpreter.

It is widely spread because

I It is very simple to learn

I There exist a huge amount of modules to be easily used

I It is free

I It is OS independent, interpreter are available for most common OS,
including HPC systems

To ’run’ a Python script, pass it as an argument to the Python executable:

> python my_script.py

Although, there exist many useful IDEs, we keep it simple during the school
and use basic text editing software.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 49

4. Python, Nutshell

4. Python

4.1 General

4.2 Nutshell

4.3 Examples

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 50

4. Python, Nutshell

Syntax

The Python language is very simple and contains only few keywords, like:

for , if, def , import , return , False , True , and , or , not , ...

Execution blocks, so called scopes, are defined by indentation, in contrast to
other languages, that use key-words or key-characters. Besides indentation,
spacing has no meaning.

1 i = 5
2 b = i * 3
3 for it in range (10):
4 print(it)
5 if it < 5:
6 print("too small")
7 do_something(it)
8 b = b + it**2
9 print(b)

Comments use the # character, where all following characters in the line are
not evaluated, but handled as a comment.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 51

4. Python, Nutshell

Common keywords and operators

I value assignment: =

I comparison operators: >, <=, ==

I arithmetic operators: e.g. +, *, **, %

I logical operators and values: and, or, not, True, False

I for, while: define loops

I if: flow control

I import, from: module loading

I def: function definition

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 52

4. Python, Nutshell

Functions

Functions allow to encapsulate frequent and common tasks. The are called by
their name, followed by (), that may contain function arguments. An optional
return value may be passed by a function.

b = max(5,7)

Here, 5 and 7 are arguments to the function max, which assigns the return
value to the variable b.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 53

4. Python, Nutshell

Variables

In Python, the types of variables do not have to be declared first, but they
adopt to the types they are assigned to. Assignment is done via =, e.g.:

1 a = 5
2 b = "summer school"
3 a = [5, 8, "fire"]

Basic value types are:

I integer: 1,3,5,-78

I floats: 3.142, 42.1, 1e-7

I strings: “juelich”, ’aachen’

I lists: [7, 3, 6.7, ’koeln’]

The values of variables can be printed to the command line with the print

function.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 54

4. Python, Nutshell

Accessing lists and arrays

Lists and (numpy) arrays are accessed via an index:

1 mylist = [7,9,1]
2 mylist [0] = 5
3 myarray = np.zeros (7)
4 myarray [2:5] = 1.0
5 b = myarray [3]

where the first entry has the index 0!

While lists can be addressed only with a single index, arrays accept ranges of
indices.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 55

4. Python, Nutshell

if-statements

To control the execution flow, if-statements are used. Here the general syntax
is as follows:

1 if condition:
2 true -block
3 else:
4 false -block

Or as an example:

1 if 5 > 8:
2 print("that’s wrong")
3 else:
4 print("true")

If not needed, the else block can be omitted.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 56

4. Python, Nutshell

for-loops

Looping over a set (e.g. a list) of values is done with a the for statement:

1 for i in set:
2 for -block

Or, to print the squares of the numbers 0 to 9:

1 for i in range (10):
2 print(i**2)

where the range(n) function returns a list starting by 0 to n-1.

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 57

4. Python, Examples

4. Python

4.1 General

4.2 Nutshell

4.3 Examples

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 58

4. Python, Examples

Example 01 – Variables and arethmetic operations

01 variables.py

1 # simple assignment
2 a = 70
3 b = 70*4.5
4 c = b ** 0.5
5
6 # print unformatted
7 print(a, b, c)
8
9 # formatted print

10 print("values of a: {}, b: {}, c: {}".format(a,b,c))
11
12 # create empyt list , via [], append values to it
13 alist = []
14 alist.append(a)
15 alist.append (4.5)
16 alist.append (10)
17
18 # read and assign list’s elements
19 alist [2] = alist [0] * 3
20
21 # print the list
22 print(alist)

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 59

4. Python, Examples

Example 01 – Variables and arethmetic operations – results

1 (70, 315.0, 17.74823934929885)
2 values of a: 70, b: 315.0, c: 17.7482393493
3 [70, 4.5, 210]

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 60

4. Python, Examples

Example 02 – Flow control

02 flow control.py

1 n = 30
2 ix = range(n+1)
3 print("ix: ", ix)
4
5 my_sum = 0
6 for i in ix:
7 x_new = (2.0 * i / n) - 1.0
8 print("i: {:3d} -> x_new: {:+.4f}".format(i, x_new))
9

10 if x_new >= 0:
11 my_sum += x_new ** 2
12 else:
13 my_sum += x_new
14
15 print("my_sum: ", my_sum)

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 61

4. Python, Examples

Example 02 – Flow control – results

1 (’ix: ’, [0, 1, 2, 3, 4, 5, 6, 7, 8, ..., 26, 27, 28, 29, 30])
2 i: 0 -> x_new: -1.0000
3 i: 1 -> x_new: -0.9333
4 i: 2 -> x_new: -0.8667
5 i: 3 -> x_new: -0.8000
6 i: 4 -> x_new: -0.7333
7 i: 5 -> x_new: -0.6667
8 i: 6 -> x_new: -0.6000
9 i: 7 -> x_new: -0.5333

10 i: 8 -> x_new: -0.4667
11 i: 9 -> x_new: -0.4000
12 i: 10 -> x_new: -0.3333
13
14 [...]
15
16 i: 27 -> x_new: +0.8000
17 i: 28 -> x_new: +0.8667
18 i: 29 -> x_new: +0.9333
19 i: 30 -> x_new: +1.0000
20 (’my_sum: ’, -2.488888888888888)

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 62

4. Python, Examples

Example 03 – Arrays

03 arrays.py

1 import numpy as np
2
3 n = 10
4 L = 3.0
5
6 x = np.linspace(-L, L, n)
7 y = x**2
8
9 print("x: {}".format(x))

10 print("y: {}\n".format(y))
11
12 print("x[2:4]: {}".format(x[2:4]))
13 print("x[-2:]: {}\n".format(x[-2:]))
14
15 d = y[1:] - y[:-1]
16 print("d: {}".format(d))
17 print("len(y): {}, len(d): {}\n".format(len(y), len(d)))
18
19 print("|d| > 1: {}".format(d[np.abs(d) > 1]))
20 print("|d| > 1: {}\n".format(np.where(np.abs(d) > 1)[0]))
21
22 z = np.zeros ((3 ,3))
23 z[1, 2] = 2.0
24 print("z: \n{}".format(z))

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 63

4. Python, Examples

Example 03 – Arrays – results

1 x: [-3. -2.33333333 -1.66666667 -1. -0.33333333 0.33333333
2 1. 1.66666667 2.33333333 3.]
3 y: [9. 5.44444444 2.77777778 1. 0.11111111 0.11111111
4 1. 2.77777778 5.44444444 9.]
5
6 x[2:4]: [-1.66666667 -1.]
7 x[-2:]: [2.33333333 3.]
8
9 d: [-3.55555556e+00 -2.66666667e+00 -1.77777778e+00 -8.88888889e-01

10 -3.05311332e-16 8.88888889e-01 1.77777778e+00 2.66666667e+00
11 3.55555556e+00]
12 len(y): 10, len(d): 9
13
14 |d| > 1: [-3.55555556 -2.66666667 -1.77777778 1.77777778 2.66666667

3.55555556]
15 |d| > 1: [0 1 2 6 7 8]
16
17 z:
18 [[0. 0. 0.]
19 [0. 0. 2.]
20 [0. 0. 0.]]

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 64

4. Python, Examples

Example 04 – Plotting data

04 plotting.py

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 L = 3
5 n = 30
6 x0 = 1.0
7
8 x = np.linspace(-L, L, n)
9 y1 = np.exp(-(x-x0)**2)

10 y2 = np.zeros_like(x)
11 y2[np.abs(x-x0) < 1.0] = 1.0
12
13 plt.plot(x,y1, label="gauss", marker=’o’)
14 plt.plot(x,y2, label="step", marker=’d’)
15
16 plt.xlabel("x")
17 plt.ylabel("y")
18 plt.legend(loc=’best’)
19 plt.grid()
20 plt.savefig("04 _plotting.pdf")
21 plt.show()

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 65

4. Python, Examples

Example 04 – Plotting data – results

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0
y

gauss
step

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 66

4. Python, Examples

Example 05 – Read and plot FDS device data

1. Change to directory 05 plot fds device/data fds couch.

2. Run FDS with the couch.fds input file.

3. Go up one directory and run the Python script print devc.py.

4. Have a look at the script.

5. Now, with graphical and file output: run plot devc.py.

6. Check the created image files.

7. Do the same with the script plot hrr.py

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 67

4. Python, Examples

Example 05 – Read and plot FDS device data – results

1 -- found quantities:
2 - quantity Time with units s
3 - quantity temp with units C
4 - quantity burn with units kg/m2/s
5 - quantity rad with units kW/m2
6 - quantity gauge with units kW/m2
7 - quantity con with units kW/m2
8 - quantity gas with units C
9 - quantity hrrpuv with units kW/m3

10 - quantity qr with units kW/m3
11 - quantity U with units kW/m2
12 -- first 10 time stamp values:
13 [0. 0.10206207 0.20412415 0.30618622 0.40824829 0.51031036
14 0.61237244 0.71443451 0.81649658 0.91855865]
15 -- first 10 values of device temp in C:
16 [20. 20. 20.105471 20.105471 20.154548 20.154548
17 20.406798 20.406798 21.338868 21.338868]
18 -- first 10 values of device burn in kg/m2/s:
19 [0.00000000e+00 0.00000000e+00 2.89327670e-20 2.89327670e-20
20 2.89372510e-20 2.89372510e-20 2.89462290e-20 2.89462290e-20
21 2.89646120e-20 2.89646120e-20]

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 68

4. Python, Examples

Example 05 – Read and plot FDS device data – results

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 69

4. Python, Examples

Example 05 – Read and plot FDS device data – results

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 70

4. Python, Examples

Example 05 – Read and plot FDS device data – results

0 20 40 60 80 100
time [s]

0

10

20

30

40

50

60
HR

R
[k

W
]

HRR
energy

0

200

400

600

800

1000

1200

1400

1600

en
er

gy
 [k

J]

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 71

4. Python, Examples

Example 05 – Read and plot FDS device data – results

0 20 40 60 80 100
time [s]

20

0

20

40

60 HRR
Q_RADI
Q_CONV
Q_COND
- sum Qs

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 72

4. Python, Examples

Example 05 – Read and plot FDS device data – results

0 20 40 60 80 100
time [s]

0

200

400

600

800

1000

1200

1400

1600

en
er

gy
 [k

J]

energy by HRR
energy by Qs
energy difference

20

15

10

5

0

5

10

15

en
er

gy
 d

iff
er

en
ce

 [k
J]

Summer School on Fire Dynamics Modeling 2017 – Getting Started – Lukas Arnold Slide 73

	Virtual Machine (VM)
	Basics
	Guest System

	FDS
	Binary Installation
	Installation from source

	Linux
	General
	Command line

	Python
	General
	Nutshell
	Examples

