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1. Computational Fluid Dynamics, Overview

1. Computational Fluid Dynamics

1.1 Overview

,J JULlCH Summer School on Fire Dynamics Modeling 2017 — Computational Fluid Dynamics — Lukas Arnold Slide 4

ORSCHUNGSZENTRUM



1. Computational Fluid Dynamics, Overview
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1. Computational Fluid Dynamics, Overview

Goals and contents

The goals of this lecture are to teach you the basics of:

» Numerical solution of partial differential equations, especially the
Navier-Stokes equations, i.e. computational fluid dynamics (CFD)

» Discretisation techniques in space and time, especially the finite difference
method, which is used by FDS

» Numerical schemes to solve the scalar transport equations

During the session, we will run a few Python scripts. The aim of those is to:

» 'Play’ with parameters and methods — no programming skills are required

» Give you a starting point for further activities after the summer school
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1. Computational Fluid Dynamics, Overview

Optional tasks

The exercises contain optional tasks:

» If the default tasks are trivial for you, give it a try, or

» Address them during the week or after the school

In any case, just contact me if you need to discuss them.
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1. Computational Fluid Dynamics, Partial Differential Equations

1. Computational Fluid Dynamics

1.2 Partial Differential Equations
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1. Computational Fluid Dynamics, Partial Differential Equations

Nomenclature of differential operators

¢ =9¢(x,y,2,t)

0 t
Wlrz _ gy,
O«
v=1 9, vVi=A
0,
Ox Oyvy — 0zvy
Vo = oy V- -V=0wx+0yvy+0:v; VXV= O,vx — OxVy
0:¢ Oxvy — Oy Vi
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1. Computational Fluid Dynamics, Partial Differential Equations

A word on PDEs

Partial differential equations (PDE) are the fundamental way to mathematically
describe a huge range of processes. Many known formulas are special solutions

of PDEs.

Examples for other major fields using PDEs:
> Electromagnetism, propagation of light
» Gravity, general relativity
» Quantum mechanics
In general it is not possible to solve PDE analytically and therefore

approximation schemes are needed. In case of the Navier-Stokes equations, the
schemes are referred to collectively as computational fluid dynamics (CFD).
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1. Computational Fluid Dynamics, Partial Differential Equations

Classes of PDEs

There exist three fundamental classes of PDEs, each with different challenges
in numerical approximations.

The classification is based on the general form of a second order PDE:

A + 2Buyy, + Cuyy + Dux + Eu, + F =0

It is important to note, that the coefficients depend on the variables, e.g.
A = A(x, y) and may therefore lead to inhomogeneous types.

» B? — AC < 0: elliptic
» B2 — AC = 0: parabolic
» B2 — AC > 0: hyperbolic
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1. Computational Fluid Dynamics, Partial Differential Equations

Classes of PDEs — Parabolic equations

A simple example is the heat equation:

¢t = k¢xx

These equations are often used to describe diffusion processes, where all
disturbances are smoothed.
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1. Computational Fluid Dynamics, Partial Differential Equations

Classes of PDEs — Hyperbolic equations

The model equation here is the wave equation:

¢tt = C2 ¢xx

Solutions are 'wave-like’, disturbances travel with finite propagation speed.

A conservative representation of hyperbolic equation systems is prescribed with
a flux F:

¢+ V-F(¢)=0
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1. Computational Fluid Dynamics, Partial Differential Equations

Classes of PDEs — Elliptic equations

A simple elliptic equation is the Laplace equation:

V=0
This type of equations is often used to describe static processes, where all
disturbances have already been relaxed.

For example, the steady state solution (9:¢ = 0) of the heat equation is a
Laplace equation.
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1. Computational Fluid Dynamics, Partial Differential Equations

Boundary conditions

The solution of PDE depends on initial and boundary conditions. In the case of
elliptic equations, only boundary conditions are needed.

Two main kinds of fundamental boundary conditions are:

» Dirichlet: The solution at the boundary 9% is prescribed or fixed in time,
e.g.:
O(x,t) = go(x) at x =090

» Neumann: The derivative in the boundary normal direction is prescribed or
constant in time:

Ond(x,t) =f(x) at x=0Q
Examples:
» Adiabatic wall: 9,T =0
> No-slip boundary: v =0
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1. Computational Fluid Dynamics, Solution approaches

1. Computational Fluid Dynamics

1.3 Solution approaches
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1. Computational Fluid Dynamics, Solution approaches

Modelling approach

| engineering / scientific problem H' physical / chemical representation |

A 4

—| mathematical representation (PDE) |
A\ 4
| discretisation I

v v v

| finite element method

finite difference method

| finite volume method |

system of algebraic equations |h

¢ \ 4

|timeintegration H numerical solution “
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1. Computational Fluid Dynamics, Solution approaches

Discretization methods

Method Pros Cons

Simple geometry

Fast evaluation
No local mesh

Easy i
High order refinement
Finite difference
Conservative Low order
Easy Slow evaluation
Complex geometry
Finite volume Local mesh refinement
(Conservative) Slow evaluation
Complex geometry Complex scheme
Local mesh refinement
Finite element High order
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1. Computational Fluid Dynamics, Solution approaches

Nodes and cells

N N 3 N
q 0 D 0O — mesh line
. » B cell/cell integral
Ay O O cell centered
7 B @ face centered
E 9\ E 2 @ node centered

Ax

\4

Subscripts for positioning: ¢; = ¢(i - Ax)
» Mesh spacing Ax, Ay and Az may be inhomogeneous

v

If the mesh lines are orthogonal, the mash is called Cartesian (like in FDS)

v

All above degrees of freedom (dof) may be used for discretization, i.e.
numerical approximation
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1. Computational Fluid Dynamics, Solution approaches

Excercise 1 — Discretization

Input file: 01_discretize function.py
Goal: Visualize the discretization of a given analytical 1D function.

Tasks:

1. Execute the Python script and observe the discretization of the function

fx)=e ™ with xe[-22]

2. Change the number of discretization points n for finer / coarser
discretization.

Optional:

3. Can you spot differences in the nodal vs. cell integral discretizations?
Where and why do they occur?

4. Change the analytical function.
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1. Computational Fluid Dynamics, Solution approaches

Excercise 1 — Discretization (results)

1.0 { === analytical
® nodal values, n=10
—— cell integral
0.8
0.6
z
=
0.4
0.2 1 / \
0.0 A

-2.0 —]'..5 —]'..O —6.5 0.0 0.5 1.0 15 2.0
X
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1. Computational Fluid Dynamics, Solution approaches

Excercise 1 — Discretization (results)

1.0 { === analytical
® nodal values, n=30
—— cell integral

0.8

0.6

f(x)

0.4 1

0.2

-2.0 —]'..5 —]'..O —6.5 0.0 0.5 1.0 15 2.0
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1. Computational Fluid Dynamics, Finite Volume Method

1. Computational Fluid Dynamics

1.4 Finite Volume Method
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1. Computational Fluid Dynamics, Finite Volume Method

Basic idea

In the finite volume method (FVM) the cell integrals are considered. All value
changes are due to cell boundary fluxes, therefore this is a natural way to
describe conserved properties. Here, the fluxes for neighboring cells are equal,

i.e. nothing gets lost; except at computational domain boundaries and with
volumetric sources.

Bl /O cellintegral
<= outward flux
[ inward flux
data for flux

The total domain integral change is given by the flux through the
computational domain boundaries (plus sources).
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1. Computational Fluid Dynamics, Finite Volume Method

Weak formulation

The method is based on the weak formulation of hyperbolic PDEs:

strong formulation ¢: + V- F(¢) =0

weak formulation / (¢t +V-F(¢)) dV =0
v

Note: In general there is a weight function in the weak formulation. If the
function is chosen to be the identity, the FVM arises, otherwise the finite
element method (FEM) is formulated.
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1. Computational Fluid Dynamics, Finite Volume Method

Example hyperbolic PDE

We will demonstrate the FVM on the following hyperbolic PDE:

Ota+ V- F(a) =0 (e.g. continuity equation with a = p, f = p\?’)
The integral form is

/Bta+V-FdV:/8tadV+/V-FdV:O
v v v

The discretisation is accomplished by dividing the computational domain V
into non-overlapping subvolumes V;. The same equations are true for the
subdomains:

/8tad\/,-+/V-Fd\/,-:O
4 Vi

Q
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1. Computational Fluid Dynamics, Finite Volume Method

Gauss theorem

Gauss's theorem states, that the integral of the divergence of any vector field
in the volume V is equal to the boundary integral of the vector field on the

volume's surface S:
/V-JdV:/LTﬁdS
v s

With 7" being the normal on the bounding surface S.
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1. Computational Fluid Dynamics, Finite Volume Method

Boundary fluxes

Using Gauss's theorem the model equation for the cell integrals a; become

i

61_»3,'-1—/ F~ﬁd5,‘=0 —  Oiaj + E fi Nk
S; 3
J

This results in the summation of cell

face values:
O O
» The flux is a function of the N
solution variables, which are only o

integrals, approximation needed

» Determine fluxes for each cell, e.g.
by averaging neighbour values O O

» Compute the sum of fluxes for
each cell
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1. Computational Fluid Dynamics, Finite Volume Method

Conservative formulation of the Navier-Stokes equations

Conservative representation of the compressible Navier-Stokes equations:

8t§;+/F-ﬁd5,-:0
S:

i

with
p v
PVx PVVx — pé
S=1 pv and F= pVvy, — pE,
PV pVV: — pé;
pE pVE + pVp — pvNvV — kVT

plus the elliptic pressure equation.

,J JU LlCH Summer School on Fire Dynamics Modeling 2017 — Computational Fluid Dynamics — Lukas Arnold Slide 29

ORSCHUNGSZENTRUM



1. Computational Fluid Dynamics, Conclusions

1. Computational Fluid Dynamics

1.5 Conclusions
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1. Computational Fluid Dynamics, Conclusions

Conclusions

» Various types of PDEs with different challenges

» To be numerically solved, PDEs must be formulated as approximating
algebraic equations, via discretization

» There exist different discretization approaches: e.g. FDM, FVM, FEM
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2. Finite Difference Method, Introduction

2. Finite Difference Method

2.1 Introduction
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2. Finite Difference Method, Introduction

Basic idea
As derivatives are the major aspect of differential equations, a numerical
approximation of those is needed.

The basic idea in the finite difference method (FDM) is to evaluate a function
at certain locations and approximate its derivatives with this data.

y=f(x) ¢
y = f(x) + ¢ y =Ay/Ax + ¢
f(xo+h)
~ Ay = f(xg+h) - f(x,)
flxo)
Ax=h
Xo Xg+h X i
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2. Finite Difference Method, Introduction

Taylor expansion

The Taylor expansion may approximate any C* function at an expansion point
Xo. The appoximation is given in terms of h, being the vicinity around xo.

=1
X0—|—h :Zﬁf (Xo (2.1)
i=0
/! 1 1 i
:f(xo)+f(x0)-h+§f (xo0) - h2+6f (x)-R+--  (22)

In practice, the expansion is aborted at a given order. The expansion up to
order three O(h*) takes following form

(3 + ) = F(x0) + F/(30) - b+ 5" (x0) - 1 + O()
Notes:

» This approximation converges to the given function in the limit h — 0.

» The rate at which the approximation converges in the above limit is called
the method’s order.

Q
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2. Finite Difference Method, Introduction

First derivative

To approximate the first derivative of a function f(x) at x = xo the Taylor
expansion may be used:

f(xo + h) = f(x0) + f'(x0)h + O(h?)

This results in the first order approximation scheme.

f(Xo + h) — f(Xo)

f'(x0) = b

+0(h)

Here, the exact value of the derivative is found with h — 0.
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2. Finite Difference Method, Numerical Derivatives

2. Finite Difference Method

2.2 Numerical Derivatives
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2. Finite Difference Method, Numerical Derivatives

First derivative

In the case of a discrete function, with h = Ax, the derivative is approximated
by

f’(x,-) _ f(xir1) — f(xi) +O(Ax)

Ax
The above formula is called forward difference, while the backward scheme is of
equal quality
IroN f(X,') — f(X,;l)
fi(x) = Ax + O(Ax)

Non-symmetric schemes can be used at domain boundaries, where there exist
no neighboring data in the boundary’s direction.

The combination of the Taylor expansion at more points leads to higher order
approximations, like the second order central difference scheme

fl(X,') _ f(Xi+1)2;Xf(X,‘_1) + O(AX2)
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2. Finite Difference Method, Numerical Derivatives

First derivative — schematic

y = f(x) 1

Yi1

S backward
exact
Yi b
/ central
yi+1 e/
forward
X1 i+1 X
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2. Finite Difference Method, Numerical Derivatives

Second derivative

The same way as higher order schemes can be constructed, approximation
schemes for higher derivatives can be formulated, like:

» Central scheme for second derivative

f”(X,') _ f-(Xifl) - 2£(XX2,) + f(X,url) + O(AX2)

» Forward scheme for second derivative

2f(X,‘) — 5f(X,'+1) + 4f(X,'+2) — f(X,'+3) Lo

11
Fra) = Ax?

(Ax)

Note: Ax? = (Ax)?
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2. Finite Difference Method, Numerical Derivatives

Error metrics

There exists a wide range of metrics to evaluate the difference of data sets or
functions. Two major ones are the L1 and L2 norms. Given two sets a and b

with n data points, like in a discrete function, they are defined as
e =ai—b;
n

[1: fels=>le|l and L2: ] =

i=1

Based on those, the error metrics are formulated:
» Mean absolute error (MAE)

1 1o
emae = ~lelli = =D el
n n ey

» Root mean square error (RMSE)

1
€RMSE = ﬁﬂeﬂz =
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2. Finite Difference Method, Numerical Derivatives

Example 2 — Numerical derivative

Input file: 02_numerical_derivative.py

Goal: Compute and visualize the numerical approximation of the derivative of a
given 1D function.

Tasks:

1. Execute the Python script to compute the numerical derivative of

fx)=e ™ with xe[-22]

2. Change the number of discretization points n to refine or coarsen the
discretization. Note the change in the RMSE. Can you observe a pattern

in the change of the RMSE?
Optional:

3. Which numerical scheme is implemented? How are the boundary values
computed?

4. Add the computation and analysis of the second derivative.
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2. Finite Difference Method, Numerical Derivatives

Example 2 — Numerical derivative — results

n=10, RMSE=7.31e-02

1.00 -
0.75 1
0.50
X 0.25
=
el
c
© 0.00
=
=
—0.25 1
—0.50 { —— analytical function
—— analytical derivation
—0.754 @ numerical derivation
—— error

-20 -15 -1.0 =05 0.0 0.5 1.0 1.5 2.0
X
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2. Finite Difference Method, Numerical Derivatives

Example 2 — Numerical derivative — results

n=40, RMSE=4.93e-03

1.00 -
0.75 1
0.50
X 0.251
G
el
c
© 0.00
=
=
—0.25
—0.50 { —— analytical function
—— analytical derivation
—0.754 @ numerical derivation
—— error

—2I.0 —]I..S —1I.0 —6.5 OjO 0.5 1.0 1.5 2.0
X
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2. Finite Difference Method, Numerical Derivatives

Example 2 — Numerical derivative — results

n E€RMSE factor
10 7.31e-2

20 1.84e-2 3.9
40 4.93e3 373
80 1.41e-3 3.50

Notes:

» The error goes down as n rises, i.e. Ax gets smaller.

» Making Ax half size, reduces the error by a factor of about 4.
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2. Finite Difference Method, Numerical Derivatives

Convergence

In general, convergence describes the behavior of an approximation method to
asymptotically represent the exact solution.

Convergence of discretization
» Numerical derivatives move towards exact derivatives as h — 0

» Numerical solution of a PDE converges towards one solution; this allows
to estimate approximation parameter

» Notes: a) LES does not converge towards DNS; b) simulations do not
converge towards experimental data

Convergence of iterative methods

> |terative solvers generally improve their solutions with each iteration

> lterative solvers, e.g. linear systems, pressure coupling, are often part of an
enclosing method or used for steady state solutions
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2. Finite Difference Method, Numerical Derivatives

Order of accuracy

The rate at which a method converges towards a solution is represented by its
order.

A method is called n-th order, if the error € is a function of the discretization h:

e=h"

An often used nomenclature is the 'big O’ notation: O(h") to indicate the
order of accuracy.
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2. Finite Difference Method, Numerical Derivatives

Example 3 — Convergence of spatial discretization (1)

Input file: 03_derivative_convergence.py

Goal: Compute and visualize the convergence of the derivative approximation
(see example 02).

Tasks:
1. Execute the Python script and compare the error output and error plot.

2. Which order of accuracy do you observe? Does the error plot support your
observation?

3. Change the scaling of the plot from linear to double logarithmic, i.e.
replace the plot call with a loglog call. Which order can you now deduce
from the plot?
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2. Finite Difference Method, Numerical Derivatives

Example 3 — Convergence of spatial discretization (1)

Input file: 03_derivative_convergence.py
Optional:
4. Increase the number of refinements n_refinement to 15. Does the order

change? If so, why?

5. How are the derivatives computed at the boundaries? Which order is
implemented? Use the alternative which is commented out. Does this
help?

6. Change the number of refinements n_refinement to 25. What do you
observe?
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2. Finite Difference Method, Numerical Derivatives

Example 3 — Convergence of spatial discretization — results

Ax € factor order
4.44e-01 7.31e-02
2.11e-01  1.84e-02 3.96 1.99
1.03e-01 4.93e-03 3.74 1.90
5.06e-02 1.41e-03 3.49 1.80
2.52e-02 4.33e-04 3.26 1.70

J]
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2. Finite Difference Method, Numerical Derivatives

Example 3 — Convergence of spatial discretization — results

0.07 A

0.06

0.05 A

0.04 -

RMSE

0.03 A1

0.02 A

0.01 A

0.00 A

—8— approximation

0.1 0.2 0.3 0.4
dx
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2. Finite Difference Method, Numerical Derivatives

Example 3 — Convergence of spatial discretization — results

—8— approximation
O(dx)
O(dx"2)
10—1 4
w 10725
(2]
=
o
1073 4
10—4 4
107!
dx
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2. Finite Difference Method, Numerical Derivatives

Example 3 — Convergence of spatial discretization — results

10° 4 . .
=8~ approximation

O(dx)

-2
10 0(dx*2)

1074 A

10—6 4

10-8 4

RMSE

10-10 4

10722 -

10-14 4

10-16 4

1077 10-° 103 104 1073 1072 107! 10°
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2. Finite Difference Method, Numerical Derivatives

Ghost cells and domain decomposition

When the total computational domain is a set of meshes, like needed for
parallel execution, the evaluation of derivatives at the mesh boundaries needs
neighbor information.

» A common practice is to add
additional layers of points,
called ghost cells or halo.

» The exchange of the halo data
is the main overhead in
parallel processing.
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2. Finite Difference Method, Time Integration

2. Finite Difference Method

2.3 Time Integration
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2. Finite Difference Method, Time Integration

Overview

For time dependent PDEs, a time integration, or time marching, scheme is
needed. There exists a wide range of schemes with individual properties.

In general the temporal derivative is
discretized, in the simplest case

(¢ = ¢(x, 1)) as:

¢
¢n+1 _ ¢n o
=f r T —=f
d=F(6) - Sz =f0)
@ p. trajectories
with ¢" = ¢(x,t") and t" = n- At.
Notes:
» At does not have to be t e t
constant

» The point in time of the
evaluation of f is crucial

,J JU LlCH Summer School on Fire Dynamics Modeling 2017 — Computational Fluid Dynamics — Lukas Arnold Slide 56

ORSCHUNGSZENTRUM



2. Finite Difference Method, Time Integration

Euler method

The most simple schemes are the forward and backward Euler methods:

09 = ()

» Forward Euler

¢n+1 _ d)n

A= @) = 9T =9+ A (e

» Backward Euler

Q" —¢" 1 1
=f(@"") = ¢"T=9¢"+At-f(¢")
At
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2. Finite Difference Method, Time Integration

Euler methods — schemes

flpm)

tn tn+1 t
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2. Finite Difference Method, Time Integration

Euler method — Explicit method — forward Euler
Consider a simple diffusion equation:

0rp = A\Oxx @

» Forward Euler: This scheme can be directly — explicitly — evaluated.

Gt — 7 _ | 91— 207 + ¢l

At Ax?
nl ¢y — 207 + o714
i = ¢i + AtkT
g+l @ @ @ @
tn @ @
X2 X1 X X1 X2
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2. Finite Difference Method, Time Integration

Euler method — Implicit method — backward Euler

Consider a simple diffusion equation:

0t = A0

» Backward Euler: Here a linear equation system must be solved for ¢

O — 7 _ |\ 91— 2677 + OFY
At Ax?

n At n n n n
- EA( =207t + ¢ir11) =¢;

A¢n+l — ¢n
g+l @ O > O @
t @ @ 1 @ @
X2 Xi.1 X Xis1 Xis2

,J JULlCH Summer School on Fire Dynamics Modeling 2017 — Computational Fluid Dynamics — Lukas Arnold

FORSCHUNGSZENTRUM

Slide 60



2. Finite Difference Method, Time Integration

Stability

An important property of a time integrator is its stability.

Given a PDE to be solved and a time integrator, a simple (linear) stability
analysis can be conducted, e.g. von Neuman stability analysis.

The outcome is the growth factor, which indicates the growth rate of small
disturbances. If this factor is larger then 1, then the scheme is unstable, as
fluctuations will infinitely rise.

» Explicit schemes tend to be unstable or conditionally stable, i.e. if a
condition for the time step is met

» Implicit schemes tend to be unconditionally stable, however they tend to
damp the solution
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2. Finite Difference Method, Time Integration

Propagation speed (1)

A constant velocity advection problem demonstrates the stability condition.

2 » Model equation
Ot + Ox(v09p) =0
o+t » Small At
» Distance traveled per At:
o0x = At < Ax
tl’!

» The information moves less then Ax in a time step At and is captured by
the neighbouring grid point

» No solution information is lost during time integration
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2. Finite Difference Method, Time Integration

Propagation speed (1)

tn+2
> Large At
- » Distance traveled per At:
o0x = oAt > Ax
tn

Xiz Xia X X1 X2

» The information moves more then Ax in a time step At and can therefore
not be captured anymore

» Information is lost during time integration
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2. Finite Difference Method, Time Integration

Courant-Friedrichs-Lewy (CFL) condition

In general, there exist stability conditions for explicit schemes, which relates the
maximal information travel speed vmax and the grid velocity v, = Ax/At:

Vmax < CFL - v,

Given a mesh resolution Ax and maximal velocities, the above condition limits
the time step:

Ax

Vmax

At < CFL-

Notes:

» The flow velocity may be computed in various ways (Lo, L1, L norms),
diffusion velocity o< 1/Ax

» There also exist other constrains on At: mass density constraint and
volume constraint.

» The value of the CFL number depends on the time integration scheme.
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2. Finite Difference Method, Time Integration

Implications of the CFL condition in FDS

The condition for At used in FDS is

[Vl
8 < = —_—
0.8 < CFL At(

+|V-J|) <1.0
X

» If the CFL number grows above the upper limit, the time step is set to
90% of the allowed, if it falls below the lower limit, then it is increased by

10%.

> In general, the time step is reduced by a factor of 2 when the mesh
spacing is reduced by a factor of 2, i.e. the total computational effort
increases by a factor of 16.

,J JU LlCH Summer School on Fire Dynamics Modeling 2017 — Computational Fluid Dynamics — Lukas Arnold Slide 65
RN




2. Finite Difference Method, Time Integration

Predictor-corrector scheme

Predictor-corrector schemes use intermediate solutions (predictions) to correct
the time integration.
f(¢n)
¢ a
flgm2)

¢n+1
¢n+1/2

d)n

tn tn+1/2 tn+l t

In two step schemes, the intermediate solution is marked with a *, e.g. ¢*.
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2. Finite Difference Method, Time Integration

Overview of other methods

There exists a whole zoo of time integration methods. All with different
stability properties, orders of accuracy and memory requirements.

» O-method: a combination of the forward and backward Euler schemes.
The parameter © expresses the weighting, i.e. © = 0 fully explicit forward
Euler, © = 1 fully implicit backward Euler, ® = 0.5 semi-implicit
Crank-Nicolson.

» Runge-Kutta methods: family of explicit and implicit multistep methods

» Backward differentiation formulas (BDF): fully implicit methods based on
previous solution steps
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2. Finite Difference Method, Time Integration

Example 4 — Wave equation (1)

In the case of isothermal compressible flows, with no convection, diffusion and
source terms, the equations reduce to

Oep ==V - (pv)
81*\72 —Vp

A linear ansatz for the solution, compressibility and the ideal gas law, lead in
1D to the sound wave equation for density dp and velocity v fluctuations

0:dp = cOxdv
0:dv = cOx0p

with ¢ = 1/’y% and the fundamental solutions:

dp(x,t) = dposin (kx —wt) and dv(x,t) = dwysin (kx — wt)
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2. Finite Difference Method, Time Integration

Example 4 — Wave equation (I1)

Input file: 04_wave.py

Goal: Solve the wave equation with different time integration schemes.

Tasks:

1.

Execute the Python script and observe solution computed by the forward
Euler scheme.

2. Change the time integration scheme to backward Euler and
Crank-Nicolson. E.g. scheme=’euler_backward’

3. Change the initial conditions to a Gauss peak: initial=’gauss’.

Optional:

4. Compare the implementations of the explicit and implicit solvers. Can you
identify the steps needed to solve the linear system in the implicit Euler
solver?

5. Are the spatial discretizations (e.g. in the explicit Euler) first or second
order?

6. What does the 'leap frog' scheme do? scheme=’leap’
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2. Finite Difference Method, Time Integration

Example 4 — results — forward Euler

scheme: euler_forward

1.00 2200, _o®®
0.75 A
0.50 A
w
c
o
© 0.254
2
E
= 0.001
o
<
T —0.25 A
©
>
—0.50 A
—0.75 A —@— density
—0— velocity
—1.00 - analytical density
T T —== T T
=2 -1 0 1 2
X
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2. Finite Difference Method, Time Integration

Example 4 — results — backward Euler

scheme: euler_backward

1.00
0.75 A
0.50 +
w
c
o
w® 0.25
2
E
= 0.001
o
<
T -0.251
©
>
—0.50 |
—0.75 A —@— density
—0— velocity
—1.00 ——— analytical density
-2 -1 0 1 2
X
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2. Finite Difference Method, Time Integration

Example 4 — results — Crank-Nicolson

scheme: theta = 0.5

1.00 P
0.75 A
0.50 +
w
c
o
w® 0.25
2
E
= 0.001
o
<
T -0.251
©
>
—0.50 |
—0.75 A —@— density
—0— velocity
—1.00 ——— analytical density
-2 -1 0 1 2
X
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2. Finite Difference Method, Time Integration

Example 4 — results — leap frog

scheme: leap

1.00 P
0.75 A
0.50 +
w
c
o
w® 0.25
2
E
= 0.001
o
<
T -0.251
©
>
—0.50 |
—0.75 A —@— density
—0— velocity
—1.00 - analytical density
-2 -1 0 1 2
X
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2. Finite Difference Method, Time Integration

Example 4 — results — convergence in space and time

1072
10—3 4
10—4 4
5 1072 4
5}
1076 4
10—7 4
—8— spatial error
—®— temporal error
1078 4 A~
O(dx"1)
O(dx"2)
1073 1072 107t

discretization
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2. Finite Difference Method, Conclusions

2. Finite Difference Method

2.4 Conclusions
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2. Finite Difference Method, Conclusions

Conclusions

» The finite difference method is a direct discretization method of
differential equations.

» The accuracy of approximation depends on the chosen discretization size.

» The time integration may also follow an FDM approach, however, stability
conditions apply.
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3. Scalar Transport

3. Scalar Transport
3.1 Introduction
3.2 Flux Limiter

3.3 Conclusions
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3. Scalar Transport, Introduction

3. Scalar Transport

3.1 Introduction
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3. Scalar Transport, Introduction

Lumped species

FDS uses a lumped species approach, where related primitive species Y,, e.g.
nitrogen, oxygen, and carbon dioxide, are transported together. The
classification into three lumped species Za (air), Zr (fuel) and Zp (products)
leads in the case of methane combustion

CHy + 2 (02 + 3.76N2) — CO> +2H,O + 7.52N,

to the following relation

0.77
0.23
0.00
0.00
0.00

This approach allows to significantly reduce the cost of the computation of the

transport process.

0.00
0.00
1.00
0.00
0.00

0.73
0.00
0.00
0.15
0.12

Za
ZF
Zp

Y,
Yo,
YcH,
Yco,
YHh,0

J]
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3. Scalar Transport, Introduction

Transport equation

The transport of scalars is an advection-diffusion equation including source
terms. In the case of the lumped species Z, it takes the following form:

0:(pZa) +V - (pZad) = V - (0DaV Zo) + e + ity

with the diffusion coefficient D, and the mass sources m’”.

The solution of this set of equations must satisfy the realizability condition,
which is

Y, >0 and ZYazl
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3. Scalar Transport, Introduction

Example 5 — Scalar transport — model equations

To demonstrate the challenge in solving the transport equation for a scalar
field, the following simplified 1D advection equation is used:

0t¢ + Ox(vo9) = 0

Here the advection velocity vy is constant and therefore the exact solution is
given by shifting the initial conditions by —vt:

o(x, t) = ¢p(x — vt,0)
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3. Scalar Transport, Introduction

Example 5 — Scalar transport — excercise (1)
Input file: 05_advection.py
Goal: Solve a simple 1D advection equation.

Tasks:

1. Execute the Python script and observe the transport of the initial field.
What do you observe, that does not satisfy you?

Does a smaller time step (dt) improve the solution?
. Try out a stepwise initial function: core=’step”’.

. Execute both cases with the so called upwind scheme: scheme=’upwind’

S I VR N}

. What happens if your parameters do not satisfy the stability criterion for
the upwind scheme?

At
— <1
VOAX‘ -

6. What solution do you achieve with the upwind scheme and At = Ax/vo?
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3. Scalar Transport, Introduction

Example 5 — Scalar transport — excercise (Il)

Input file: 05_advection.py

Goal: Solve a simple 1D advection equation.

Optional:

7. Read the function update_upwind. What is the order of accuracy of the
upwind scheme?

8. The current implementation of the upwind scheme supports only positive
velocities. Look at the current implementation (update_upwind) and add
the handling of negative velocities.
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3. Scalar Transport, Introduction

Example 5 — Scalar transport — results — central difference scheme — Gauss

t=0.20, dx=5.00e-02, dt=1.00e-02

1.0 A

0.8 1

0.6

—@— numerical
- analytical

phi

-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0
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3. Scalar Transport, Introduction

Example 5 — Scalar transport — results — central difference scheme — step

t=0.20, dx=5.00e-02, dt=1.00e-02

1ol il

0.8 1

0.6 1
—@— numerical
- analytical

phi

0.4 4

0.2

0.0 1

-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0
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3. Scalar Transport, Introduction

Example 5 — Scalar transport — results — upwind scheme — Gauss

t=0.20, dx=5.00e-02, dt=1.00e-02

1.0 A

0.8 1

0.6

—@— numerical
- analytical

phi

-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0
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3. Scalar Transport, Introduction

Example 5 — Scalar transport — results — upwind scheme — step

t=0.20, dx=5.00e-02, dt=1.00e-02

1.0 A

0.8 1

0.6 1
—@— numerical
- analytical

phi

0.4 4

0.2

0.0 1

-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0
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3. Scalar Transport, Introduction

Upwind scheme (1)

o
n Q
tN+AX/v,
L2
¢ °

tn )

* A 2
X2 X1 X X1 Xis2

For a positive (vp > 0) advection velocity the upwind scheme is given by

n_ o"
§1+1 _ (Z77 _ VOAt(b’ (blfl
Ax

In the case of At = Ax/w:

+1
7 = (;5771
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3. Scalar Transport, Introduction

Upwind scheme (1)

.
.
.
.
-

At = Ax/v

At < Ax/v
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3. Scalar Transport, Flux Limiter

3. Scalar Transport

3.2 Flux Limiter
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3. Scalar Transport, Flux Limiter

Basic idea

The advection equation can be represented in the conservative form for ¢ = pZ
as

0:(¢) +V - F = DS(p, Z) with the flux F = ¢
where for sake of simplicity the index « is omitted and the diffusion and source
terms are represented by DS.

The basic idea in the flux limiting schemes is to handle the flux in a way to
prevent increasing oscillations.

The so called total variation diminishing (TVD) schemes preserve (or reduce)
the variation of the scalar field by adjusting the flux.
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3. Scalar Transport, Flux Limiter

Staggered grid

Instead of a cell centered evaluation of the flux in the advection equation, it is
evaluated at the cell faces. As FDS uses a staggered grid, where vector
quantities are located on the cell faces, the second order divergence evaluation
is similar to the FVM appraoch.

e
©
¢ O ¢ O O density
@ © @ v,
(] m o v,
O — m) flux
() O é O
Xi.1/2 Xi Xiv2 X
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3. Scalar Transport, Flux Limiter

Flux interpolation

The flux handling in FDS is done by limiting the transported scalar values in
the flux evaluation. In 1D, it results in:

_ FL _ AFL
F. F. ,-+%ui+% ¢ j—1u; 1

1
2 3 73
= DS — at¢+ Ax

O0rp +

The interpolation of the transported scalar is based on local variations and in
the upstream (sign of ui+%) direction

6¢Ioc,i+% = 0Qloc = Pit1 — Pi

¢i — Pi—1 if UH_% >0

(S(bup’#%:(s(ﬁup: Giro — piv1 if Ui+%<0
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3. Scalar Transport, Flux Limiter

Flux limiter

The general representation of different limiter schemes can be expressed via the
limiter function B(r) with r being the ratio of successive variations

_ 00w and ﬁ-+ _{ o B Uiy > 0

" 5 8T\ 61— B()Ya i,y <O
Flux Limiter Scheme B(r) «  FLUX_LIMITER
central difference 1 loc 0
Gudunov 0 loc 1
Superbee (LES default)  max(0, min(2r,1), min(r,2)) loc 2
MINMOD max(0, min(1,r)) loc 3
CHARM (DNS default) (32 4+1)/(r(2 +1)?) up 4
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3. Scalar Transport, Flux Limiter

Example 6 — Scalar transport with FDS

Input directory: 06_fds_flux_ limiter
Input file: move_slug.fds
Verification input file with a reduced simulation time of 1 s.
Goal: Investigate the different flux limiter available in FDS.
Tasks:
1. Read the FDS input file. What is the simulation scenario? What should
happen?
2. Run FDS with the input file.

3. Change to FLUX_LIMITER to central differences and Godunov schemes. Do
you observe the expected behaviour?
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3. Scalar Transport, Flux Limiter

Example 6 — Scalar transport with FDS — results — initial values

Slice
W_SFEC_2
kaky

1.00
040
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3. Scalar Transport, Flux Limiter

Example 6 — Scalar transport with FDS — results — FLUX_LIMITER=0

Slice
V_SPEC_2
kakg

1.00
040
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3. Scalar Transport, Flux Limiter

Example 6 — Scalar transport with FDS — results — FLUX_LIMITER=1

Slice
W_SFEC_2
kaky

1.00
040
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3. Scalar Transport, Flux Limiter

Example 6 — Scalar transport with FDS — results — FLUX_LIMITER=2

Slice
W_SFEC_2
kaky

1.00
040

0sa
040
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3. Scalar Transport, Flux Limiter

Example 6 — Scalar transport with FDS — results — FLUX_LIMITER=3

Slice
V_SPEC_2
kakg

1.00
040
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3. Scalar Transport, Flux Limiter

Example 6 — Scalar transport with FDS — results — FLUX_LIMITER=4

Slice
W_SFEC_2
kaky

1.00
040
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3. Scalar Transport, Flux Limiter

Enforcing realizability

Although TVD prevent fluctuations, they can do it in general only in 1D, but
not in 3D. Therefore spurious fluctuations may lead to e.g. negative densities.

The transport scheme must support the realizabiliy:

Ya>0 and > Ya=1

However, if (pY)q obeys (pY)a > 0, then Y, is guaranteed to be realizable.

Thus, there exists a minimal density threshold pmin, that should be preserved.
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3. Scalar Transport, Flux Limiter

Scalar boundedness correction

In 1D, the correction dp for densities with a computed value p; below pmin
should satisfy:

» boundedness: p; = p; + dpi > Pmin
> conservation: > .0p;V; =0
> minimal variation: ). |dpj|
It is implemented as a diffusion operation, with
> 5pi = Pmin — P
> dmijt1 = —¢ (/)?il - P:*) Vi

and the artificial diffusion coefficient ¢;

__ Pmin—pi
G = * * *
Pi_1 = 2p] + Pl
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3. Scalar Transport, Conclusions

3. Scalar Transport

3.3 Conclusions
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3. Scalar Transport, Conclusions

Conclusions

» The advection of scalar values is generally challenging topic.

» Limiting the flux, via TVD schemes like upwind or Superbee schemes,
allows for stable solutions.

» Still, fluctuations in density enforce corrections methods.
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