
Computational Fluid Dynamics

Summer School on Fire Dynamics Modeling 2017

Lukas Arnold

Contents:

1. Computational Fluid Dynamics

2. Finite Difference Method

3. Scalar Transport

1. Computational Fluid Dynamics

1. Computational Fluid Dynamics

1.1 Overview

1.2 Partial Differential Equations

1.3 Solution approaches

1.4 Finite Volume Method

1.5 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 3

1. Computational Fluid Dynamics, Overview

1. Computational Fluid Dynamics

1.1 Overview

1.2 Partial Differential Equations

1.3 Solution approaches

1.4 Finite Volume Method

1.5 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 4

1. Computational Fluid Dynamics, Overview

Lukas Arnold

Education:

Diploma (2005) and PhD (2008) in computational
physics at the Ruhr-Universität Bochum, Germany

Employment:

Researcher at the Jülich Supercomputing Centre,
Germany

I (2008 – 2009) Division “Application Support”

I (2009 – 2012) Division “Computational Science”

I (2012 – now) Division “Civil Safety and Traffic”

Lecturer at the Bergische Universität Wuppertal

I Master Civil Engineering

I Master Safety Engineering

I Master Computer Simulation in Science

arnold_46.jpg

arnold_49.jpg

arnold_52.jpg

arnold_47.jpg

arnold_50.jpg

arnold_53.jpg

arnold_48.jpg

arnold_51.jpg

arnold_54.jpg

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 5

1. Computational Fluid Dynamics, Overview

Goals and contents

The goals of this lecture are to teach you the basics of:

I Numerical solution of partial differential equations, especially the
Navier-Stokes equations, i.e. computational fluid dynamics (CFD)

I Discretisation techniques in space and time, especially the finite difference
method, which is used by FDS

I Numerical schemes to solve the scalar transport equations

During the session, we will run a few Python scripts. The aim of those is to:

I ’Play’ with parameters and methods – no programming skills are required

I Give you a starting point for further activities after the summer school

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 6

1. Computational Fluid Dynamics, Overview

Optional tasks

The exercises contain optional tasks:

I If the default tasks are trivial for you, give it a try, or

I Address them during the week or after the school

In any case, just contact me if you need to discuss them.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 7

1. Computational Fluid Dynamics, Partial Differential Equations

1. Computational Fluid Dynamics

1.1 Overview

1.2 Partial Differential Equations

1.3 Solution approaches

1.4 Finite Volume Method

1.5 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 8

1. Computational Fluid Dynamics, Partial Differential Equations

Nomenclature of differential operators

φ = φ(x , y , z , t)

∂φ(x , y , z , t)

∂t
= ∂tφ = φt

∇ =

 ∂x
∂y
∂z

 ∇2 = ∆

∇φ =

 ∂xφ
∂yφ
∂zφ

 ∇ · ~v = ∂xvx + ∂yvy + ∂zvz ∇× ~v =

 ∂yvz − ∂zvy
∂zvx − ∂xvz
∂xvy − ∂yvx



Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 9

1. Computational Fluid Dynamics, Partial Differential Equations

A word on PDEs

Partial differential equations (PDE) are the fundamental way to mathematically
describe a huge range of processes. Many known formulas are special solutions
of PDEs.

Examples for other major fields using PDEs:

I Electromagnetism, propagation of light

I Gravity, general relativity

I Quantum mechanics

In general it is not possible to solve PDE analytically and therefore
approximation schemes are needed. In case of the Navier-Stokes equations, the
schemes are referred to collectively as computational fluid dynamics (CFD).

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 10

1. Computational Fluid Dynamics, Partial Differential Equations

Classes of PDEs

There exist three fundamental classes of PDEs, each with different challenges
in numerical approximations.

The classification is based on the general form of a second order PDE:

Auxx + 2Buxy + Cuyy + Dux + Euy + F = 0

It is important to note, that the coefficients depend on the variables, e.g.
A = A(x , y) and may therefore lead to inhomogeneous types.

I B2 − AC < 0: elliptic

I B2 − AC = 0: parabolic

I B2 − AC > 0: hyperbolic

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 11

1. Computational Fluid Dynamics, Partial Differential Equations

Classes of PDEs – Parabolic equations

A simple example is the heat equation:

φt = kφxx

These equations are often used to describe diffusion processes, where all
disturbances are smoothed.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 12

1. Computational Fluid Dynamics, Partial Differential Equations

Classes of PDEs – Hyperbolic equations

The model equation here is the wave equation:

φtt = c2φxx

Solutions are ’wave-like’, disturbances travel with finite propagation speed.

A conservative representation of hyperbolic equation systems is prescribed with
a flux F :

φt +∇ · F (φ) = 0

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 13

1. Computational Fluid Dynamics, Partial Differential Equations

Classes of PDEs – Elliptic equations

A simple elliptic equation is the Laplace equation:

∇2φ = 0

This type of equations is often used to describe static processes, where all
disturbances have already been relaxed.

For example, the steady state solution (∂tφ = 0) of the heat equation is a
Laplace equation.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 14

1. Computational Fluid Dynamics, Partial Differential Equations

Boundary conditions

The solution of PDE depends on initial and boundary conditions. In the case of
elliptic equations, only boundary conditions are needed.

Two main kinds of fundamental boundary conditions are:

I Dirichlet: The solution at the boundary ∂Ω is prescribed or fixed in time,
e.g.:

φ(x , t) = φ0(x) at x = ∂Ω

I Neumann: The derivative in the boundary normal direction is prescribed or
constant in time:

∂nφ(x , t) = f (x) at x = ∂Ω

Examples:

I Adiabatic wall: ∂nT = 0

I No-slip boundary: v = 0

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 15

1. Computational Fluid Dynamics, Solution approaches

1. Computational Fluid Dynamics

1.1 Overview

1.2 Partial Differential Equations

1.3 Solution approaches

1.4 Finite Volume Method

1.5 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 16

1. Computational Fluid Dynamics, Solution approaches

Modelling approach

engineering	/	scientific	problem physical	/	chemical	representation

mathematical	representation	(PDE)

discretisation

finite	difference	methodfinite	volume	methodfinite	element	method

system	of	algebraic	equations

numerical	solution solutiontime	integration

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 17

1. Computational Fluid Dynamics, Solution approaches

Discretization methods

Method Pros Cons

Finite difference

Fast evaluation
Easy
High order

Simple geometry
No local mesh
refinement

Finite volume

Conservative
Easy
Complex geometry
Local mesh refinement

Low order
Slow evaluation

Finite element

(Conservative)
Complex geometry
Local mesh refinement
High order

Slow evaluation
Complex scheme

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 18

1. Computational Fluid Dynamics, Solution approaches

Nodes and cells

∆x

∆y

mesh line
cell /	cell integral
cell centered
face centered
node centered

I Subscripts for positioning: φi = φ(i ·∆x)

I Mesh spacing ∆x , ∆y and ∆z may be inhomogeneous

I If the mesh lines are orthogonal, the mash is called Cartesian (like in FDS)

I All above degrees of freedom (dof) may be used for discretization, i.e.
numerical approximation

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 19

1. Computational Fluid Dynamics, Solution approaches

Excercise 1 – Discretization

Input file: 01 discretize function.py

Goal: Visualize the discretization of a given analytical 1D function.

Tasks:

1. Execute the Python script and observe the discretization of the function

f (x) = e−x2

with x ∈ [−2, 2]

2. Change the number of discretization points n for finer / coarser
discretization.

Optional:

3. Can you spot differences in the nodal vs. cell integral discretizations?
Where and why do they occur?

4. Change the analytical function.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 20

1. Computational Fluid Dynamics, Solution approaches

Excercise 1 – Discretization (results)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0
f(x

)
analytical
nodal values, n=10
cell integral

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 21

1. Computational Fluid Dynamics, Solution approaches

Excercise 1 – Discretization (results)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0
f(x

)
analytical
nodal values, n=30
cell integral

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 22

1. Computational Fluid Dynamics, Finite Volume Method

1. Computational Fluid Dynamics

1.1 Overview

1.2 Partial Differential Equations

1.3 Solution approaches

1.4 Finite Volume Method

1.5 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 23

1. Computational Fluid Dynamics, Finite Volume Method

Basic idea

In the finite volume method (FVM) the cell integrals are considered. All value
changes are due to cell boundary fluxes, therefore this is a natural way to
describe conserved properties. Here, the fluxes for neighboring cells are equal,
i.e. nothing gets lost; except at computational domain boundaries and with
volumetric sources.

cell integral/
outward flux
inward flux
data for flux

The total domain integral change is given by the flux through the
computational domain boundaries (plus sources).

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 24

1. Computational Fluid Dynamics, Finite Volume Method

Weak formulation

The method is based on the weak formulation of hyperbolic PDEs:

strong formulation φt +∇ · F (φ) = 0

weak formulation

∫
V

(φt +∇ · F (φ)) dV = 0

Note: In general there is a weight function in the weak formulation. If the
function is chosen to be the identity, the FVM arises, otherwise the finite
element method (FEM) is formulated.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 25

1. Computational Fluid Dynamics, Finite Volume Method

Example hyperbolic PDE

We will demonstrate the FVM on the following hyperbolic PDE:

∂ta +∇ · ~f (a) = 0
(

e.g. continuity equation with a = ρ, ~f = ρ~v
)

The integral form is∫
V

∂ta +∇ · ~f dV =

∫
V

∂ta dV +

∫
V

∇ · ~f dV = 0

The discretisation is accomplished by dividing the computational domain V
into non-overlapping subvolumes Vi . The same equations are true for the
subdomains: ∫

Vi

∂ta dVi +

∫
Vi

∇ · ~f dVi = 0

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 26

1. Computational Fluid Dynamics, Finite Volume Method

Gauss theorem

Gauss’s theorem states, that the integral of the divergence of any vector field ~u
in the volume V is equal to the boundary integral of the vector field on the
volume’s surface S : ∫

V

∇ · ~u dV =

∫
S

~u · ~n dS

With ~n being the normal on the bounding surface S .

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 27

1. Computational Fluid Dynamics, Finite Volume Method

Boundary fluxes

Using Gauss’s theorem the model equation for the cell integrals ai become

∂tai +

∫
Si

~f · ~n dSi = 0 → ∂tai +
∑
j

fknk

This results in the summation of cell
face values:

I The flux is a function of the
solution variables, which are only
integrals, approximation needed

I Determine fluxes for each cell, e.g.
by averaging neighbour values

I Compute the sum of fluxes for
each cell

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 28

1. Computational Fluid Dynamics, Finite Volume Method

Conservative formulation of the Navier-Stokes equations

Conservative representation of the compressible Navier-Stokes equations:

∂t~si +

∫
Si

F · ~n dSi = 0

with

~s =


ρ
ρvx
ρvy
ρvz
ρE

 and F =


ρ~v

ρ~vvx − p~ex
ρ~vvy − p~ey
ρ~vvz − p~ez

ρ~vE + ρ~vp − µ~v∇~v − k∇T


plus the elliptic pressure equation.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 29

1. Computational Fluid Dynamics, Conclusions

1. Computational Fluid Dynamics

1.1 Overview

1.2 Partial Differential Equations

1.3 Solution approaches

1.4 Finite Volume Method

1.5 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 30

1. Computational Fluid Dynamics, Conclusions

Conclusions

I Various types of PDEs with different challenges

I To be numerically solved, PDEs must be formulated as approximating
algebraic equations, via discretization

I There exist different discretization approaches: e.g. FDM, FVM, FEM

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 31

2. Finite Difference Method

2. Finite Difference Method

2.1 Introduction

2.2 Numerical Derivatives

2.3 Time Integration

2.4 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 32

2. Finite Difference Method, Introduction

2. Finite Difference Method

2.1 Introduction

2.2 Numerical Derivatives

2.3 Time Integration

2.4 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 33

2. Finite Difference Method, Introduction

Basic idea

As derivatives are the major aspect of differential equations, a numerical
approximation of those is needed.

The basic idea in the finite difference method (FDM) is to evaluate a function
at certain locations and approximate its derivatives with this data.

x

y =	f(x)

x0 x0+h

∆x	=	h

∆y =	f(x0+h)	- f(x0)

y’ =	f’(x0)	+	c y’ =	∆y/∆x	+	c

f(x0)

f(x0+h)

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 34

2. Finite Difference Method, Introduction

Taylor expansion

The Taylor expansion may approximate any C∞ function at an expansion point
x0. The appoximation is given in terms of h, being the vicinity around x0.

f (x0 + h) =
∞∑
i=0

1

i !
f (i)(x0) · hi (2.1)

= f (x0) + f ′(x0) · h +
1

2
f ′′(x0) · h2 +

1

6
f ′′′(x0) · h3 + · · · (2.2)

In practice, the expansion is aborted at a given order. The expansion up to
order three O(h3) takes following form

f (x0 + h) = f (x0) + f ′(x0) · h +
1

2
f ′′(x0) · h2 +O(h3)

Notes:

I This approximation converges to the given function in the limit h→ 0.

I The rate at which the approximation converges in the above limit is called
the method’s order.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 35

2. Finite Difference Method, Introduction

First derivative

To approximate the first derivative of a function f (x) at x = x0 the Taylor
expansion may be used:

f (x0 + h) = f (x0) + f ′(x0)h +O(h2)

This results in the first order approximation scheme.

f ′(x0) =
f (x0 + h)− f (x0)

h
+O(h)

Here, the exact value of the derivative is found with h→ 0.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 36

2. Finite Difference Method, Numerical Derivatives

2. Finite Difference Method

2.1 Introduction

2.2 Numerical Derivatives

2.3 Time Integration

2.4 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 37

2. Finite Difference Method, Numerical Derivatives

First derivative

In the case of a discrete function, with h = ∆x , the derivative is approximated
by

f ′(xi) =
f (xi+1)− f (xi)

∆x
+O(∆x)

The above formula is called forward difference, while the backward scheme is of
equal quality

f ′(xi) =
f (xi)− f (xi−1)

∆x
+O(∆x)

Non-symmetric schemes can be used at domain boundaries, where there exist
no neighboring data in the boundary’s direction.

The combination of the Taylor expansion at more points leads to higher order
approximations, like the second order central difference scheme

f ′(xi) =
f (xi+1)− f (xi−1)

2∆x
+O(∆x2)

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 38

2. Finite Difference Method, Numerical Derivatives

First derivative – schematic

x

y	=	f(x)

xi-1 xi+1

yi-1
yi+1

xi

yi

exact

central

forward

backward

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 39

2. Finite Difference Method, Numerical Derivatives

Second derivative

The same way as higher order schemes can be constructed, approximation
schemes for higher derivatives can be formulated, like:

I Central scheme for second derivative

f ′′(xi) =
f (xi−1)− 2f (xi) + f (xi+1)

∆x2
+O(∆x2)

I Forward scheme for second derivative

f ′′(xi) =
2f (xi)− 5f (xi+1) + 4f (xi+2)− f (xi+3)

∆x2
+O(∆x)

Note: ∆x2 = (∆x)2

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 40

2. Finite Difference Method, Numerical Derivatives

Error metrics
There exists a wide range of metrics to evaluate the difference of data sets or
functions. Two major ones are the L1 and L2 norms. Given two sets a and b
with n data points, like in a discrete function, they are defined as

εi = ai − bi

L1 : ‖ε‖1 =
n∑

i=1

|εi | and L2 : ‖ε‖2 =

√√√√ n∑
i=1

ε2
i

Based on those, the error metrics are formulated:

I Mean absolute error (MAE)

εMAE =
1

n
‖ε‖1 =

1

n

n∑
i=1

|εi |

I Root mean square error (RMSE)

εRMSE =
1√
n
‖ε‖2 =

√√√√1

n

n∑
i=1

ε2
i

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 41

2. Finite Difference Method, Numerical Derivatives

Example 2 – Numerical derivative

Input file: 02 numerical derivative.py

Goal: Compute and visualize the numerical approximation of the derivative of a
given 1D function.

Tasks:

1. Execute the Python script to compute the numerical derivative of

f (x) = e−x2

with x ∈ [−2, 2]

2. Change the number of discretization points n to refine or coarsen the
discretization. Note the change in the RMSE. Can you observe a pattern
in the change of the RMSE?

Optional:

3. Which numerical scheme is implemented? How are the boundary values
computed?

4. Add the computation and analysis of the second derivative.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 42

2. Finite Difference Method, Numerical Derivatives

Example 2 – Numerical derivative – results

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(x
) a

nd
 f'

(x
)

n=10, RMSE=7.31e-02

analytical function
analytical derivation
numerical derivation
error

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 43

2. Finite Difference Method, Numerical Derivatives

Example 2 – Numerical derivative – results

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(x
) a

nd
 f'

(x
)

n=40, RMSE=4.93e-03

analytical function
analytical derivation
numerical derivation
error

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 44

2. Finite Difference Method, Numerical Derivatives

Example 2 – Numerical derivative – results

n εRMSE factor
10 7.31e-2
20 1.84e-2 3.9
40 4.93e-3 3.73
80 1.41e-3 3.50

Notes:

I The error goes down as n rises, i.e. ∆x gets smaller.

I Making ∆x half size, reduces the error by a factor of about 4.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 45

2. Finite Difference Method, Numerical Derivatives

Convergence

In general, convergence describes the behavior of an approximation method to
asymptotically represent the exact solution.

Convergence of discretization

I Numerical derivatives move towards exact derivatives as h→ 0

I Numerical solution of a PDE converges towards one solution; this allows
to estimate approximation parameter

I Notes: a) LES does not converge towards DNS; b) simulations do not
converge towards experimental data

Convergence of iterative methods

I Iterative solvers generally improve their solutions with each iteration

I Iterative solvers, e.g. linear systems, pressure coupling, are often part of an
enclosing method or used for steady state solutions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 46

2. Finite Difference Method, Numerical Derivatives

Order of accuracy

The rate at which a method converges towards a solution is represented by its
order.

A method is called n-th order, if the error ε is a function of the discretization h:

ε = hn

An often used nomenclature is the ’big O’ notation: O(hn) to indicate the
order of accuracy.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 47

2. Finite Difference Method, Numerical Derivatives

Example 3 – Convergence of spatial discretization (I)

Input file: 03 derivative convergence.py

Goal: Compute and visualize the convergence of the derivative approximation
(see example 02).

Tasks:

1. Execute the Python script and compare the error output and error plot.

2. Which order of accuracy do you observe? Does the error plot support your
observation?

3. Change the scaling of the plot from linear to double logarithmic, i.e.
replace the plot call with a loglog call. Which order can you now deduce
from the plot?

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 48

2. Finite Difference Method, Numerical Derivatives

Example 3 – Convergence of spatial discretization (II)

Input file: 03 derivative convergence.py

Optional:

4. Increase the number of refinements n refinement to 15. Does the order
change? If so, why?

5. How are the derivatives computed at the boundaries? Which order is
implemented? Use the alternative which is commented out. Does this
help?

6. Change the number of refinements n refinement to 25. What do you
observe?

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 49

2. Finite Difference Method, Numerical Derivatives

Example 3 – Convergence of spatial discretization – results

∆x ε factor order
4.44e-01 7.31e-02
2.11e-01 1.84e-02 3.96 1.99
1.03e-01 4.93e-03 3.74 1.90
5.06e-02 1.41e-03 3.49 1.80
2.52e-02 4.33e-04 3.26 1.70

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 50

2. Finite Difference Method, Numerical Derivatives

Example 3 – Convergence of spatial discretization – results

0.1 0.2 0.3 0.4
dx

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

RM
SE

approximation

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 51

2. Finite Difference Method, Numerical Derivatives

Example 3 – Convergence of spatial discretization – results

10 1

dx

10 4

10 3

10 2

10 1

RM
SE

approximation
O(dx)
O(dx^2)

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 52

2. Finite Difference Method, Numerical Derivatives

Example 3 – Convergence of spatial discretization – results

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

dx

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

RM
SE

approximation
O(dx)
O(dx^2)

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 53

2. Finite Difference Method, Numerical Derivatives

Ghost cells and domain decomposition

When the total computational domain is a set of meshes, like needed for
parallel execution, the evaluation of derivatives at the mesh boundaries needs
neighbor information.

I A common practice is to add
additional layers of points,
called ghost cells or halo.

I The exchange of the halo data
is the main overhead in
parallel processing.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 54

2. Finite Difference Method, Time Integration

2. Finite Difference Method

2.1 Introduction

2.2 Numerical Derivatives

2.3 Time Integration

2.4 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 55

2. Finite Difference Method, Time Integration

Overview

For time dependent PDEs, a time integration, or time marching, scheme is
needed. There exists a wide range of schemes with individual properties.

In general the temporal derivative is
discretized, in the simplest case
(φ = φ(x , t)) as:

∂tφ = f (φ) → φn+1 − φn

∆t
= f (φ)

with φn = φ(x , tn) and tn = n ·∆t.

Notes:

I ∆t does not have to be
constant

I The point in time of the
evaluation of f is crucial

t

!

tn tn+1

!n

!n+1
exact

trajectories

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 56

2. Finite Difference Method, Time Integration

Euler method

The most simple schemes are the forward and backward Euler methods:

∂tφ = f (φ)

I Forward Euler

φn+1 − φn

∆t
= f (φn) → φn+1 = φn + ∆t · f (φn)

I Backward Euler

φn+1 − φn

∆t
= f (φn+1) → φn+1 = φn + ∆t · f (φn+1)

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 57

2. Finite Difference Method, Time Integration

Euler methods – schemes

t

!

tn tn+1

!n

!n+1
exact

f(!n)

f(!n+1)

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 58

2. Finite Difference Method, Time Integration

Euler method – Explicit method – forward Euler

Consider a simple diffusion equation:

∂tφ = λ∂xxφ

I Forward Euler: This scheme can be directly – explicitly – evaluated.

φn+1
i − φn

i

∆t
= λ

φn
i−1 − 2φn

i + φn
i+1

∆x2

φn+1
i = φn

i + ∆tλ
φn
i−1 − 2φn

i + φn
i+1

∆x2

xixi-1 xi+1
tn

tn+1

xi-2 xi+2

xixi-1 xi+1
tn

tn+1

xi-2 xi+2

explicit

implicitSummer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 59

2. Finite Difference Method, Time Integration

Euler method – Implicit method – backward Euler

Consider a simple diffusion equation:

∂tφ = λ∂xxφ

I Backward Euler: Here a linear equation system must be solved for φn+1.

φn+1
i − φn

i

∆t
= λ

φn+1
i−1 − 2φn+1

i + φn+1
i+1

∆x2

φn+1
i − ∆t

∆x2
λ
(
φn+1
i−1 − 2φn+1

i + φn+1
i+1

)
= φn

i

Aφn+1 = φn

xixi-1 xi+1
tn

tn+1

xi-2 xi+2

xixi-1 xi+1
tn

tn+1

xi-2 xi+2

explicit

implicit

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 60

2. Finite Difference Method, Time Integration

Stability

An important property of a time integrator is its stability.

Given a PDE to be solved and a time integrator, a simple (linear) stability
analysis can be conducted, e.g. von Neuman stability analysis.

The outcome is the growth factor, which indicates the growth rate of small
disturbances. If this factor is larger then 1, then the scheme is unstable, as
fluctuations will infinitely rise.

I Explicit schemes tend to be unstable or conditionally stable, i.e. if a
condition for the time step is met

I Implicit schemes tend to be unconditionally stable, however they tend to
damp the solution

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 61

2. Finite Difference Method, Time Integration

Propagation speed (I)

A constant velocity advection problem demonstrates the stability condition.

xixi-1 xi+1
tn

tn+1

xi-2 xi+2

tn+2 I Model equation

∂tφ+ ∂x(v0φ) = 0

I Small ∆t

I Distance traveled per ∆t:

δx = v0∆t < ∆x

I The information moves less then ∆x in a time step ∆t and is captured by
the neighbouring grid point

I No solution information is lost during time integration

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 62

2. Finite Difference Method, Time Integration

Propagation speed (II)

xixi-1 xi+1
tn

tn+1

xi-2 xi+2

tn+2

I Large ∆t

I Distance traveled per ∆t:

δx = v0∆t > ∆x

I The information moves more then ∆x in a time step ∆t and can therefore
not be captured anymore

I Information is lost during time integration

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 63

2. Finite Difference Method, Time Integration

Courant-Friedrichs-Lewy (CFL) condition

In general, there exist stability conditions for explicit schemes, which relates the
maximal information travel speed vmax and the grid velocity vg = ∆x/∆t:

vmax < CFL · vg

Given a mesh resolution ∆x and maximal velocities, the above condition limits
the time step:

∆t < CFL · ∆x

vmax

Notes:

I The flow velocity may be computed in various ways (L∞, L1, L2 norms),
diffusion velocity ∝ 1/∆x

I There also exist other constrains on ∆t: mass density constraint and
volume constraint.

I The value of the CFL number depends on the time integration scheme.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 64

2. Finite Difference Method, Time Integration

Implications of the CFL condition in FDS

The condition for ∆t used in FDS is

0.8 ≤ CFL = ∆t

(
‖~v‖
∆x

+ |∇ · ~u|
)
≤ 1.0

I If the CFL number grows above the upper limit, the time step is set to
90% of the allowed, if it falls below the lower limit, then it is increased by
10%.

I In general, the time step is reduced by a factor of 2 when the mesh
spacing is reduced by a factor of 2, i.e. the total computational effort
increases by a factor of 16.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 65

2. Finite Difference Method, Time Integration

Predictor-corrector scheme

Predictor-corrector schemes use intermediate solutions (predictions) to correct
the time integration.

t

!

tn tn+1

!n

!n+1
exact

f(!n+1/2)

tn+1/2

f(!n)

!n+1/2

In two step schemes, the intermediate solution is marked with a ∗, e.g. φ∗.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 66

2. Finite Difference Method, Time Integration

Overview of other methods

There exists a whole zoo of time integration methods. All with different
stability properties, orders of accuracy and memory requirements.

I Θ-method: a combination of the forward and backward Euler schemes.
The parameter Θ expresses the weighting, i.e. Θ = 0 fully explicit forward
Euler, Θ = 1 fully implicit backward Euler, Θ = 0.5 semi-implicit
Crank-Nicolson.

I Runge-Kutta methods: family of explicit and implicit multistep methods

I Backward differentiation formulas (BDF): fully implicit methods based on
previous solution steps

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 67

2. Finite Difference Method, Time Integration

Example 4 – Wave equation (I)

In the case of isothermal compressible flows, with no convection, diffusion and
source terms, the equations reduce to

∂tρ = −∇ · (ρ~v)

∂t~v = −∇p

A linear ansatz for the solution, compressibility and the ideal gas law, lead in
1D to the sound wave equation for density δρ and velocity δv fluctuations

∂tδρ = c∂xδv

∂tδv = c∂xδρ

with c =
√
γ RT

mM
and the fundamental solutions:

δρ(x , t) = δρ0 sin (kx − ωt) and δv(x , t) = δv0 sin (kx − ωt)

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 68

2. Finite Difference Method, Time Integration

Example 4 – Wave equation (II)

Input file: 04 wave.py

Goal: Solve the wave equation with different time integration schemes.

Tasks:

1. Execute the Python script and observe solution computed by the forward
Euler scheme.

2. Change the time integration scheme to backward Euler and
Crank-Nicolson. E.g. scheme=’euler backward’

3. Change the initial conditions to a Gauss peak: initial=’gauss’.

Optional:

4. Compare the implementations of the explicit and implicit solvers. Can you
identify the steps needed to solve the linear system in the implicit Euler
solver?

5. Are the spatial discretizations (e.g. in the explicit Euler) first or second
order?

6. What does the ’leap frog’ scheme do? scheme=’leap’

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 69

2. Finite Difference Method, Time Integration

Example 4 – results – forward Euler

2 1 0 1 2
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v
an

d
rh

o
flu

ct
ua

tio
ns

scheme: euler_forward

density
velocity
analytical density

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 70

2. Finite Difference Method, Time Integration

Example 4 – results – backward Euler

2 1 0 1 2
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v
an

d
rh

o
flu

ct
ua

tio
ns

scheme: euler_backward

density
velocity
analytical density

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 71

2. Finite Difference Method, Time Integration

Example 4 – results – Crank-Nicolson

2 1 0 1 2
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v
an

d
rh

o
flu

ct
ua

tio
ns

scheme: theta = 0.5

density
velocity
analytical density

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 72

2. Finite Difference Method, Time Integration

Example 4 – results – leap frog

2 1 0 1 2
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v
an

d
rh

o
flu

ct
ua

tio
ns
scheme: leap

density
velocity
analytical density

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 73

2. Finite Difference Method, Time Integration

Example 4 – results – convergence in space and time

10 3 10 2 10 1

discretization

10 8

10 7

10 6

10 5

10 4

10 3

10 2

er
ro

r

spatial error
temporal error
O(dx^1)
O(dx^2)

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 74

2. Finite Difference Method, Conclusions

2. Finite Difference Method

2.1 Introduction

2.2 Numerical Derivatives

2.3 Time Integration

2.4 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 75

2. Finite Difference Method, Conclusions

Conclusions

I The finite difference method is a direct discretization method of
differential equations.

I The accuracy of approximation depends on the chosen discretization size.

I The time integration may also follow an FDM approach, however, stability
conditions apply.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 76

3. Scalar Transport

3. Scalar Transport

3.1 Introduction

3.2 Flux Limiter

3.3 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 77

3. Scalar Transport, Introduction

3. Scalar Transport

3.1 Introduction

3.2 Flux Limiter

3.3 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 78

3. Scalar Transport, Introduction

Lumped species

FDS uses a lumped species approach, where related primitive species Yα, e.g.
nitrogen, oxygen, and carbon dioxide, are transported together. The
classification into three lumped species ZA (air), ZF (fuel) and ZP (products)
leads in the case of methane combustion

CH4 + 2 (O2 + 3.76N2)→ CO2 + 2H2O + 7.52N2

to the following relation


0.77 0.00 0.73
0.23 0.00 0.00
0.00 1.00 0.00
0.00 0.00 0.15
0.00 0.00 0.12

 ·
 ZA

ZF

ZP

 =


YN2

YO2

YCH4

YCO2

YH2O


This approach allows to significantly reduce the cost of the computation of the
transport process.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 79

3. Scalar Transport, Introduction

Transport equation

The transport of scalars is an advection-diffusion equation including source
terms. In the case of the lumped species Zα it takes the following form:

∂t(ρZα) +∇ · (ρZα~u) = ∇ · (ρDα∇Zα) + ṁ′′′α + ṁ′′′b,α

with the diffusion coefficient Dα and the mass sources ṁ′′′.

The solution of this set of equations must satisfy the realizability condition,
which is

Yα ≥ 0 and
∑

Yα = 1

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 80

3. Scalar Transport, Introduction

Example 5 – Scalar transport – model equations

To demonstrate the challenge in solving the transport equation for a scalar
field, the following simplified 1D advection equation is used:

∂tφ+ ∂x(v0φ) = 0

Here the advection velocity v0 is constant and therefore the exact solution is
given by shifting the initial conditions by −vt:

φ(x , t) = φ(x − vt, 0)

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 81

3. Scalar Transport, Introduction

Example 5 – Scalar transport – excercise (I)

Input file: 05 advection.py

Goal: Solve a simple 1D advection equation.

Tasks:

1. Execute the Python script and observe the transport of the initial field.
What do you observe, that does not satisfy you?

2. Does a smaller time step (dt) improve the solution?

3. Try out a stepwise initial function: core=’step’.

4. Execute both cases with the so called upwind scheme: scheme=’upwind’

5. What happens if your parameters do not satisfy the stability criterion for
the upwind scheme?

∣∣∣∣v0
∆t

∆x

∣∣∣∣ ≤ 1

6. What solution do you achieve with the upwind scheme and ∆t = ∆x/v0?

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 82

3. Scalar Transport, Introduction

Example 5 – Scalar transport – excercise (II)

Input file: 05 advection.py

Goal: Solve a simple 1D advection equation.

Optional:

7. Read the function update upwind. What is the order of accuracy of the
upwind scheme?

8. The current implementation of the upwind scheme supports only positive
velocities. Look at the current implementation (update upwind) and add
the handling of negative velocities.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 83

3. Scalar Transport, Introduction

Example 5 – Scalar transport – results – central difference scheme – Gauss

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0
ph

i
t=0.20, dx=5.00e-02, dt=1.00e-02

numerical
analytical

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 84

3. Scalar Transport, Introduction

Example 5 – Scalar transport – results – central difference scheme – step

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0
ph

i
t=0.20, dx=5.00e-02, dt=1.00e-02

numerical
analytical

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 85

3. Scalar Transport, Introduction

Example 5 – Scalar transport – results – upwind scheme – Gauss

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0
ph

i
t=0.20, dx=5.00e-02, dt=1.00e-02

numerical
analytical

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 86

3. Scalar Transport, Introduction

Example 5 – Scalar transport – results – upwind scheme – step

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0
ph

i
t=0.20, dx=5.00e-02, dt=1.00e-02

numerical
analytical

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 87

3. Scalar Transport, Introduction

Upwind scheme (I)

xixi-1 xi+1

tn

tn+∆x/v0

xi-2 xi+2

For a positive (v0 > 0) advection velocity the upwind scheme is given by

φn+1
i = φn

i − v0∆t
φn
i − φn

i−1

∆x

In the case of ∆t = ∆x/v0:

φn+1
i = φn

i−1

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 88

3. Scalar Transport, Introduction

Upwind scheme (II)

∆t	>	∆x/v

∆t	<	∆x/v

xixi-1 xi+1

!

∆t	=	∆x/v

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 89

3. Scalar Transport, Flux Limiter

3. Scalar Transport

3.1 Introduction

3.2 Flux Limiter

3.3 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 90

3. Scalar Transport, Flux Limiter

Basic idea

The advection equation can be represented in the conservative form for φ = ρZ
as

∂t(φ) +∇ · ~F = DS(ρ,Z) with the flux ~F = φ~u

where for sake of simplicity the index α is omitted and the diffusion and source
terms are represented by DS .

The basic idea in the flux limiting schemes is to handle the flux in a way to
prevent increasing oscillations.

The so called total variation diminishing (TVD) schemes preserve (or reduce)
the variation of the scalar field by adjusting the flux.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 91

3. Scalar Transport, Flux Limiter

Staggered grid

Instead of a cell centered evaluation of the flux in the advection equation, it is
evaluated at the cell faces. As FDS uses a staggered grid, where vector
quantities are located on the cell faces, the second order divergence evaluation
is similar to the FVM appraoch.

density
vx
vy
flux

xi xi+1/2 xi+1xi-1/2

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 92

3. Scalar Transport, Flux Limiter

Flux interpolation

The flux handling in FDS is done by limiting the transported scalar values in
the flux evaluation. In 1D, it results in:

∂tφ+
Fi+ 1

2
− Fi− 1

2

∆x
= DS → ∂tφ+

φFL
i+ 1

2
ui+ 1

2
− φFL

i− 1
2
ui− 1

2

∆x

The interpolation of the transported scalar is based on local variations and in
the upstream (sign of ui+ 1

2
) direction

δφloc,i+ 1
2

= δφloc = φi+1 − φi

δφup,i+ 1
2

= δφup =

{
φi − φi−1 if ui+ 1

2
> 0

φi+2 − φi+1 if ui+ 1
2
< 0

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 93

3. Scalar Transport, Flux Limiter

Flux limiter

The general representation of different limiter schemes can be expressed via the
limiter function B(r) with r being the ratio of successive variations

r =
δφup

δφloc
and φFL

i+ 1
2

=

{
φi + B(r) 1

2
δφα if ui+ 1

2
> 0

φi+1 − B(r) 1
2
δφα if ui+ 1

2
< 0

Flux Limiter Scheme B(r) α FLUX LIMITER

central difference 1 loc 0
Gudunov 0 loc 1
Superbee (LES default) max(0, min(2r,1), min(r,2)) loc 2
MINMOD max(0, min(1,r)) loc 3
CHARM (DNS default)

(
3 1

r
+ 1
)
/
(
r(1

r
+ 1)2

)
up 4

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 94

3. Scalar Transport, Flux Limiter

Example 6 – Scalar transport with FDS

Input directory: 06 fds flux limiter

Input file: move slug.fds

Verification input file with a reduced simulation time of 1 s.

Goal: Investigate the different flux limiter available in FDS.

Tasks:

1. Read the FDS input file. What is the simulation scenario? What should
happen?

2. Run FDS with the input file.

3. Change to FLUX LIMITER to central differences and Godunov schemes. Do
you observe the expected behaviour?

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 95

3. Scalar Transport, Flux Limiter

Example 6 – Scalar transport with FDS – results – initial values

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 96

3. Scalar Transport, Flux Limiter

Example 6 – Scalar transport with FDS – results – FLUX LIMITER=0

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 97

3. Scalar Transport, Flux Limiter

Example 6 – Scalar transport with FDS – results – FLUX LIMITER=1

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 98

3. Scalar Transport, Flux Limiter

Example 6 – Scalar transport with FDS – results – FLUX LIMITER=2

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 99

3. Scalar Transport, Flux Limiter

Example 6 – Scalar transport with FDS – results – FLUX LIMITER=3

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 100

3. Scalar Transport, Flux Limiter

Example 6 – Scalar transport with FDS – results – FLUX LIMITER=4

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 101

3. Scalar Transport, Flux Limiter

Enforcing realizability

Although TVD prevent fluctuations, they can do it in general only in 1D, but
not in 3D. Therefore spurious fluctuations may lead to e.g. negative densities.

The transport scheme must support the realizabiliy:

Yα ≥ 0 and
∑

Yα = 1

However, if (ρY)α obeys (ρY)α ≥ 0, then Yα is guaranteed to be realizable.

Thus, there exists a minimal density threshold ρmin, that should be preserved.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 102

3. Scalar Transport, Flux Limiter

Scalar boundedness correction

In 1D, the correction δρ for densities with a computed value ρ∗i below ρmin

should satisfy:

I boundedness: ρi = ρ∗i + δρi ≥ ρmin

I conservation:
∑

i δρiVi = 0

I minimal variation:
∑

i |δρi |

It is implemented as a diffusion operation, with

I δρi = ρmin − ρ∗i

I δmi±1 = −ci (ρ∗i±1 − ρ∗i)Vi

and the artificial diffusion coefficient ci

ci =
ρmin − ρ∗i

ρ∗i−1 − 2ρ∗i + ρ∗i+1

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 103

3. Scalar Transport, Conclusions

3. Scalar Transport

3.1 Introduction

3.2 Flux Limiter

3.3 Conclusions

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 104

3. Scalar Transport, Conclusions

Conclusions

I The advection of scalar values is generally challenging topic.

I Limiting the flux, via TVD schemes like upwind or Superbee schemes,
allows for stable solutions.

I Still, fluctuations in density enforce corrections methods.

Summer School on Fire Dynamics Modeling 2017 – Computational Fluid Dynamics – Lukas Arnold Slide 105

	Computational Fluid Dynamics
	Overview
	Partial Differential Equations
	Solution approaches
	Finite Volume Method
	Conclusions

	Finite Difference Method
	Introduction
	Numerical Derivatives
	Time Integration
	Conclusions

	Scalar Transport
	Introduction
	Flux Limiter
	Conclusions

