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The governing equations

Basic conservation equations

Navier-Stokes equations
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Mathematical-physical model

"FDS solves numerically a form of the Navier-Stokes equations
appropriate for low-speed (Ma < 0.3), thermally-driven flow
with an emphasis on smoke and heat transport from fires"

Extract from FDS User’s Guide

Navier-Stokes Equations

• non-linear, coupled system of partial differential equations (PDE)
• prediction of spacial and temporal evolution of fluid flows (liquid or gas)
• based on conservation laws for mass, momentum and energy
• applicable to full range of low up to high speed flows
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Conservation Laws

Physical principles
• Mass is conserved
• Newton’s second law
• First law of thermodynamics

Mathematical equations
• Continuity equation
• Momentum equation
• Energy equation

The only way to change the amount of a quantity φ in a control volume with time
is to flux it through the boundary or create/consume it within the volume

Based on continuum assumption:

• molecular fluid structure ignored

• only described by macroscopic properties (density, pressure, temperature, velocity, ...)
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General form of conservation equations

Integral form
temporal change on volume flux through surface effect of sources/sink∫

V

∂

∂ t
φ dV +

∫
S

Hφ ·n dS =
∫
V

Fφ dV V

S

dS
n
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General form of conservation equations

Integral form
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General form of conservation equations

Integral form
temporal change on volume flux through surface effect of sources/sink∫

V

∂

∂ t
φ dV +

∫
S

Hφ ·n dS

︸ ︷︷ ︸∫
V

∇·Hφ dV

=
∫
V

Fφ dV

Divergence theorem

infinitesimally small volume element

V

S

dS
n

Differential form

∂φ

∂ t
+∇ ·Hφ = Fφ

dV n
dS
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Governing Equations in conservative form

Continuity equation: Mass is neither created nor destroyed

φ = ρ Hφ = ρu , Fφ ≡ Fc(...)

Momentum equation: Change of momentum = surface forces + volume forces

φ = ρ u Hφ = ρuu , Fφ ≡ Fm(...)

Energy equation: Change of internal energy = heat transfer + work done

φ = ρ e , Hφ = [ρe+p]u , Fφ ≡ Fe(...)

mass production species

viscosity, gravity, particle drag

fire, conduction, radiation
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The low Mach number assumption

Flow regimes in real-life applications

Pressure decomposition for low-Mach flow
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Flow regimes in real-life applications

Typical situation

• flow field is characterized by multiple space and/or time scales
• principal flow velocities are small compared to speed of sound

Standard numerical techniques are expensive or may fail

Key idea

• identify singular limit regime in which numerical methods fail
• analyze mathematical structure of singular limit and reasons for failure
• develop modifications/simplifications for numerical schemes to overcome difficulties
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Spezification of flow regime

Mach number

M :=
uref

cref
=

speed of flow
speed of sound

Measure for compressibility of flow

M = 0 : incompressible
0 < M << 1 : weakly compressible
M = 1 : fully compressible

Big influence of M on mathematical equations and their numerical solution

Note: Speed of sound corresponds to velocity by which small perturbations are propagated
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Mach number for fire driven flows

Typical situation

• comprehensible part of flow is in low-Mach range
• sound waves travel much faster

Speed for typical fire applications:

uref . 10 m
s

Speed of sound in dry air:

cref ≈ 343 m
s

Mfire . 0.03 very small !
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Strong restrictions to full schemes

Note: General Navier-Stokes equations take into account all scales of velocity

CFL-condition is related to speed of sound

• extremely small time steps ∆t ∼ ∆x/cref

• extremely many time steps to move just one cell ∼ 1/M

• large influence of numerical dissipation

Troubles with efficiency and accuracy
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Low Mach number asymptotics

Key observation for M→ 0

• compression effects become negligible
• sound-wave propagation becomes unnoticeable
• flow mainly driven by slower convection terms

Flows of compressible fluids may be considered incompressible for M < 0.3

Idea: Decouple sound waves from equations

• focus on low-Mach flow only
• allow time steps to be bounded only by the speed if flow
• reduce numerical effort comprehensibly
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Governing equations in conservative form

Continuity equation
∂ρ

∂ t
+∇ · (ρu) = Fc

Momentum equation
∂ρu
∂ t

+∇ · (ρuu)+∇p = Fm

Energy equation
∂ρe
∂ t

+∇ · ([ρe+p]u) = Fe

Note: Species equation not listed here because not needed for further discussions
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Governing equations in conservative form

Continuity equation
∂ρ

∂ t
+∇ · (ρu) = Fc

Momentum equation
∂ρu
∂ t

+∇ · (ρuu)+∇p = Fm

Energy equation
∂ρe
∂ t

+∇ · ([ρe+p]u) = Fe

only pressure gradient appears
no absolute value needed

velocity components strongly
coupled with other equations

no separate evolution equation for the pressure (6 quantities, 5 equations)

additional equation of state p = ρRT to close system (ideal gas law)
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Pressure decomposition for low-Mach flow

Basic strategy (according to Rehm and Baum)

• pressure is decomposed into two parts with different physical meaning

p(x, t) = pm(z, t)+ p̃(x, t)

• the single parts account for the effects on different scales

Background pressure p(z, t)

thermodynamic

resolves the large-scaled fluctuations

Perturbation pressure p̃(x, t)

hydrodynamic

resolves the small-scaled fluctuations
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Momentum equation

Fully resolved case

∂ρu
∂ t

+∇ · (ρuu) =−∇p−∇ · τ +(ρ−ρ0)g

behaves like O( 1
M2 )

Observations for M→ 0

• pressure gradient contribution gets singular (tends towards infinity)
• introduces a significant source of inaccuracy
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Momentum equation

Low-Mach limit

∂ρu
∂ t

+∇ · (ρuu) =−∇p̃−∇ · τ +(ρ−ρ0)g

only perturbation pressure retained

Simplifications

• only perturbation pressure has to be considered in momentum equation
• CFL-condition only depends on flow velocity (larger time steps!)
• perturbation pressure must be recomputed in every time step

Dr. Susanne Kilian The low Mach number assumption 14/51



Equation of state and energy equation

Fully resolved case

ρe =
p

γ−1
+

ρuu
2 and p = ρTR

kinetic part behaves like O(M2)

Observations for M→ 0

• temperature and density can be assumed to be inversely proportional
• kinetic part in energy density decreases with O(M2)

• internal energy e and enthalpy h related via background pressure h = e+p/ρ

Dr. Susanne Kilian The low Mach number assumption 15/51



Equation of state and energy equation

Low-Mach limit

ρe =
p

γ−1
+

ρuu
2 and p = ρTR

only background pressure retained

Simplifications

• energy conservation can be written in terms of sensible enthalpy hs

• energy equation does not need to be solved explicitly
• no influence of perturbation pressure any more
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Divergence condition

New energy conservation equation

∂ρhs

∂ t
+∇ · (ρhsu) =

Dp̄
Dt

+ q̇′′′−∇ · q̇′′

Factoring out the divergence

∇ ·u = D−P
∂p
∂ t

:=
1

ρhs

[
D
Dt

(p̄−ρhs)+ q̇′′′−∇ · q̇′′
]

divergence directly related to background pressure and heat

Energy equation only serves as divergence condition for velocity field

Note: Due to low-Mach assumption, the material derivative simplifies to Dp
Dt =

∂p
∂ t +u ·∇p≈ ∂p

∂ t +w ∂p
∂ z
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Handling of different pressure zones

Individual treatment of closed compartments

• p is usually constant for a building except for stratification
• in specified compartments different background pressures pm can be used
e.g. if pressure is increased by fire or air is blown in a separated zone

• zones can be connected via HVAC-system, but no detailed flow equations must be
solved within ducts

• if separation between zones breaks, consistency is guaranteed by time integration
over zone volumes
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Summary: The role of the different pressure variables

Background pressure Perturbation pressure
thermodynamic hydrodynamic

function of time t and only z-coordinate function of time t and space

resolves stratification of atmosphere drives the fluid motion

only retains in the equations of energy only retains in the momentum equation
and state

spatially homogenous, varies only in big represents local changes in the small-scaled
length scale, infinitely fast in small scales flow structure

delivers divergence constraint for velocity field guarantees fulfillment of the divergence
constraint in momentum equation

not influenced by local pressure changes no influence on energy density
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Simplified low-Mach equations

Limit of Navier-Stokes equations for M→ 0

• new set of equations which focus on advective transport of smoke, heat and
momentum

• momentum and energy equations are decoupled
• energy equation isn’t considered as separate conservation equation but its terms are
used for definition of a divergence constraint for the velocity field

• divergence constraint becomes an elliptic equation for the pressure which is
enforced by momentum equation

• when divergence constraint is fulfilled by velocity field, sensible enthalpy
equation is satisfied by construction
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The solution of the Pressure-Poisson equation

Derivation of Pressure-Poisson equation

Discretization in space and time

Dr. Susanne Kilian The solution of the Pressure-Poisson equation 20/51



Derivation of Pressure-Poisson Equation

Non-conservative formulation of momentum equation

ρ

(
∂u
∂ t

+(u ·∇)u
)
+∇p = ρg+ fb +∇· τij
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Derivation of Pressure-Poisson Equation

Non-conservative formulation of momentum equation

ρ

(
∂u
∂ t

+(u ·∇)u︸ ︷︷ ︸
)
+ ∇p︸︷︷︸= ρg+ fb +∇· τij

∇|u|2

2
−u×ω

vector identity

ρ0g+∇p̃

vector identity pressure decomposition

Note: Hydrostatic pressure gradient ρ0g was substracted from both sides
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Derivation of Pressure-Poisson Equation

Replace terms and divide by density

∂u
∂ t

+
∇|u|2

2
−u×ω +

1
ρ

∇p̃︸︷︷︸=
1
ρ

[
(ρ−ρ0)g+ fb +∇· τij

]

∇

(
p̃
ρ

)
− p̃∇

(
1
ρ

)
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Derivation of Pressure-Poisson Equation

Define stagnation energy: H ≡ |u|2/2+ p̃/ρ

∂u
∂ t

+∇H −u×ω− 1
ρ

[
(ρ−ρn)g+ fb +∇· τij

]
︸ ︷︷ ︸ − p̃∇

(
1
ρ

)
︸ ︷︷ ︸= 0

FA

accounts for advective terms

FB
accounts for baroclinic torque
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Derivation of Pressure-Poisson Equation

Simplified momentum equation

∂u
∂ t

+∇H+F = 0 with F = FA +FB

∇H =−∂u
∂ t
−F
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Derivation of Pressure-Poisson Equation

Taking its divergence

∇
2H =−∂ (∇·u)

∂ t
−∇·F

Elliptic partial differential equation for pressure term H

Advantages:

• separable linear algebraic system with constant coefficients
• solvable up to machine accuracy by optimized direct Fast Fourier method (FFT)
(from elliptic solver package CRAYFISHPAK)
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Space discretization by finite difference method

Hi+1,jk−2Hijk +Hi−1,jk

δx2 +
Hi,j+1,k−2Hijk +Hi,j−1,k

δy2 +
Hij,k+1−2Hijk +Hij,k−1

δ z2

=−
Fx,ijk−Fx,i−1,jk

δx
−

Fy,ijk−Fy,i,j−1,k

δy
−

Fz,ijk−Fz,ij,k−1

δ z
− δ

δ t
(∇·u)ijk

−4

1

1 1

1

· 1
h2

-6

1

1

1 1

1

1
1
h2

second order accuracy
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Time discretization by predictor-corrector method

Explicit time stepping methods

• easy to program
• simple backward substitution
• less computing time per time step
• less storage needs
• strong stability constraints
(small time steps)

Implicit time stepping methods

• more complicated to program
• solution of system of equations
• high computing time per time step
• higher storage needs
• better stability
(much bigger time steps)

Predictor-corrector methods

Combination of both to save the advantages
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Pressure solutions per time step

2-stage Runge-Kutta method

Predictor step

∇
2Hn =−(∇·u)∗−∇·un

δ t
−∇·Fn

Corrector step

∇
2H∗ =−

[
(∇ ·u)n+1− 1

2 (∇ ·u
∗+∇ ·un)

δ t/2

]
−∇·F∗
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Basic Algorithm in space and time

compute density ρ
n+1
i from density equation

compute species Yn+1
α from species equations

compute temperature Tn+1 from equation of state

compute divergence (∇·u)n+1 from energy equation

compute pressure Hn from Poisson equation

compute velocity un+1 from momentum equation

One stage: Forward Euler

If pn satisfies discrete
Poisson equation, then un+1 is

divergence-free at next time step

effective coupling of mass,
momentum, energy,
and equation of state

Solution of pressure equation guaran-
tees that the divergence of updated
velocity is consistent
using newest pressure field
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Boundary Conditions

Boundary Description Type

open • external boundary, free in/outflow Dirichlet

solid • external boundary, entirely solid or forced Neumann

• external boundary, mix of solid and open Dirichlet

• internal obstruction IBM

interface • common face of neighboring meshes Dirichlet

Note: Dirichlet (set function value), Neumann (set normal derivativ), IBM (Immersed boundary method)
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Decomposition into multiple meshes

Local FFT-methods with interface update

FFT

FFT

FFT

FFT

• Fast Fourier Transformation:
spectral solver with nearly optimal
complexity O(N log(N))

• exploits the fact that sine and cosine are
eigenfunctions of Laplace operator

• only works for purely rectilinear domains
• locally correct solutions to the related local
Poisson problems

• mesh solutions are clustered together to
global one (averaging at interfaces)
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Possible troubles with the pressure solution

Along mesh interfaces

• H is continuous along interfaces, but its discretized gradient is not
• normal velocity components at the interface may differ at tn+1

Along internal solids

• normal component of F is set equal to previous value of gradient of H
• normal component of velocity is not exactly zero

Different values of p̃ in equation

• perturbation pressure p̃ included in F is from previous time step
• value of p̃ implicit in H will not equal value in F after solving Poisson equation
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Iterative procedure for updating velocity

Specify tolerance for velocity components

&PRES VELOCITY_TOLERANCE = 0.001, MAX_PRESSURE_ITERATIONS = 100

Multiple solutions of the Poisson equation per time step

• until normal component of velocity at internal solids and mesh boundaries converges
within tolerance

• until old and new values of the perturbation pressure p̃ converge to within tolerance

Additional overhead depending on geometry and mesh decomposition
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Handling of internal obstructions

Structured cartesian grids

· 1
h2

−1

−1 4

−1

−1

−1

−1 4

−1

−1

−1

−1 4

−1

−1

−1

−1 4

−1

−1

1 3 4 5 6 7

11 12 13 14

15 17 18 20 21

22 23 24 28

29 30 31 32 34 35

36 37 39 40 41 42

43 47 48 49

50 51 53 54 56

57 58 59 60

64 65 66 67 68 70

71 72 73 74 75 76 77

• Internal obstructions are represented as
masked grid cells

• no-flux condition cannot be directly
prescribed

• possible penetration of velocity field into
internal solids
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Handling of internal obstructions

Structured cartesian grids

· 1
h2
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11 12 13 14

15 17 18 20 21

22 23 24 28

29 30 31 32 34 35

36 37 39 40 41 42

43 47 48 49

50 51 53 54 56

57 58 59 60

64 65 66 67 68 70

71 72 73 74 75 76 77

• Internal obstructions are represented as
masked grid cells

• no-flux condition cannot be directly
prescribed

• possible penetration of velocity field into
internal solids

• iterative correction of normal velocity
components along internal solids by
immersed boundary method up specified
to tolerance
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Test case: 3D-cube with obstruction

Using additional multi-mesh decomposition

Different pressure devices 8-mesh decompostion

Note: Cyclic inflow from the left (via ramp), open outflow on the right
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Test case: 3D-cube with obstruction

Single-mesh case: Velocity errors for different tolerances, 243 cells

tol = 10−2

∅ 1 pressure iteration

tol = 10−6

∅ 3.5 pressure iterations

tol = 10−16

∅ 30 pressure iterations

Note: Pressure iteration successfully reduces velocity error along internal obstruction
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Test case: 3D-cube with obstruction

1-mesh case: pressure iterations and course of devices

Number of pressure iterations per time step Pressure device on the right

Requires more pressure iterations if tolerance is decreased (≈ 4 for tol=10−4,≈ 10 for tol=10−6)
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Test case: 3D-cube with obstruction

8-mesh case: pressure iterations and course of devices

Number of pressure iterations per time step Pressure device on the right

Handling of mesh interfaces requires still much more pressure (≈ 25 for tol=10−4,≈ 200 for tol=10−6)
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Test case: Flow throuh a pipe

Velocity error along internal obstructions

Velocity field Velocity error for tol = 10−4

Note: Hard test case due to many changes of direction and multiple obstructions
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Test case: Flow throuh a pipe

Comparison of pressure iterations

1-mesh versus 8-mesh 1-mesh versus 8-mesh - zoomed

Number of pressure iterations increases comprehensively
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Different test cases to run

• zone_break: Definition of pressure zones which open at specified times

• door_crack: Fire in sealed compartment with leakages to outside

• stack_effect: Modeling stack effects in a building

• duct_flow: Flow through a angled 3D-pipe

• dancing_eddies: Flow through a 2D-channel with obstruction

• cube3d_obstruction: Flow through a 3D-cube with obstruction
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Parallelization concepts in FDS

Different parallelization concepts

Multi-mesh applications in FDS
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Parallelization

Why parallelization?

• highly complex geometries with huge spatial extents (millions of unknowns)
• many interacting physical and chemical quantities over very long simulation times
• storage restrictions on single processor systems

extreme needs of memory and computing power

Main objectives

• enlarging the range of computable problems
• improving resulting accuracy by use of higher resolutions
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Parallelization of algorithms

Idea behind

• reduce computational time by use of additional resources (CPU’s, cores)
• in ideal case parallel execution time should be inversely proportional to number of
processors

Realistic goal?

Basic programming concepts

• Message Passing Interface (MPI) → Distributed memory
• Open Multi-Processing (OpenMP) → Shared memory
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Grid decomposition in FDS

Multi-mesh applications

• computational domain is subdivided into multiple meshes
• workload can be distributed among multiple CPUs
• each mesh consists of a rectilinear uniformly spaced grid
• different resolutions are possible on single meshes (must match by integer ratio)
• internal solids are represented as rectangular obstructions snapping to grid

1

2

3

4

if possible keep mesh interfaces free of complicated phenomena
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Distributed Memory

Message Passing Interface (MPI)

• based on a network connected
CPU cluster

• given problem is subdivided into
subprocesses which are assigned
to one or more CPUs

• subprocesses act independently
with own private memory

• data must be transferred
explicitly via MPI-library
(communication routines)
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Shared Memory

Open Multi-Processing (OpenMP)

• multiple cores on single CPU are
exploited by threads

• all threads have direct access to
common physical memory

• parallelization is handled via
directive-based programming
constructs

• number of available cores must be
specified by OMP_NUM_THREADS
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OpenMP: Handling single-mesh cases

Single mesh per CPU - only one core used

$OMP PARALLEL DO

do i=1,n

z(i) = a*x(i) + b*y(i)

enddo

$OMP END PARALLEL DO

• creates a set of threads, executes a block of code in parallel, then joins the threads

• default number of available cores set via OMP_NUM_THREADS

• number of used cores is printed at job start in FDS
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Grid decomposition in FDS

Usage of MPI in FDS

1

2

3

4 • each mesh corresponds to a separate
processes which is assigned to a CPU
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Grid decomposition in FDS

Usage of MPI in FDS

1

2

3

4 • each mesh corresponds to a separate
processes which is assigned to a CPU

• in every time step different data along
mesh interfaces have to be transferred
over network
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MPI versus OpenMP

MPI OpenMP

+ potentially good scalability properties – potential scalability restricted by architecture
(memory scales with number of processors) of CPU (number of cores)

– programmer responsible for communication – programmer responsible for identification
and synchronization between processes of parallelism and thread synchronization

– additional overhead by data exchange + no communication needed between threads
(network transfer, synchronization)

– mapping of existing global data structures + no reorganisation of memory organisation needed
to distributed organization difficult

– optimized serial codes can’t be used – speedup less than number of cores (by far)
without special adaptions

Dr. Susanne Kilian Parallelization concepts in FDS 46/51



Hybrid usage of shared and distributed memory

Mixture of OpenMP and MPI

• multiple MPI processes communicating via MPI-library
• each MPI process itself has several OpenMP threads

Hybrid versions preferred on modern HPC-computers

Careful balancing of resources necessary

• cores of CPU can be used for both, OpenMP and MPI
• optimal distribution of programming tasks necessary to get maximum speedup
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Command line syntax

Mac OSX and Linux

• MPI installation, e.g. by www.open-mpi.org (in addition to FDS installation)
• for different computers my_hosts.txt-File with specification of slots

mpirun -np <NPROCESSES> fds -hostfile myhosts.txt chid.fds

Windows

• MPI-routines bundled with the FDS download (only FDS installation needed)
• system environment variables set automatically, default with 4 OpenMP threads

mpiexec -n <NPROCESSES> fds chid.fds
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Processing multi-mesh cases in FDS

MPI only: one core per CPU for all meshes

• each mesh assigned to single CPU

• data transfer between CPU’s
handled via MPI over network

Dr. Susanne Kilian Parallelization concepts in FDS 49/51



Processing multi-mesh cases in FDS

• larger meshes should run exclusively
on separate CPU’s

• smaller meshes can be collected on
a single CPU (must fit to storage!)

• may be more efficient due to
communciation overhead and
waiting times
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Processing multi-mesh cases in FDS

MPI only: multiple cores used for meshes 2, 3, 4

• three smaller meshes sampled on
single CPU

• but separate process/memory for
each mesh

• data transfer between meshes within
CPU handled via MPI
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Processing multi-mesh cases in FDS

MPI only: single core used for meshes 2, 3, 4

• three meshes are processed serially
within one process

• no data transfer needed
(common storage)

Dr. Susanne Kilian Parallelization concepts in FDS 49/51



Processing multi-mesh cases in FDS

MPI only: single core used for meshes 2, 3, 4

• three meshes are processed serially
within one process

• no data transfer needed
(common storage)

• use parameter MPI_PROCESS
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Processing multi-mesh cases in FDS

Hybrid-MPI-OpenMP: also using OpenMP for mesh 1

• parallelize suitable parts of code via
corresponding OpenMP-directives

• use parameter N_THREADS
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Processing multi-mesh cases in FDS

Hybrid-MPI-OpenMP: also using OpenMP for all meshes

• parallelize suitable parts of code via
corresponding OpenMP-directives

• use parameter N_THREADS

• can also be applied for the serial
processing of meshes 2, 3, 4

Dr. Susanne Kilian Parallelization concepts in FDS 49/51



Efficiency issues

Limits of speedup

• scalability for realistic applications has its limits
• the optimal speedup is fairly never reached (linear growth with number of processors)
• fixed portion of purely serial components in algorithm cannot be performed in parallel
• with growing number of processors, speedup stronger depends on this serial fraction
• adding of more processors can even deteriorate the speedup in worst case

Challenge load balancing

• difficult to get a proper load balancing (comparable number of cells per mesh)
• probably long idle times due to waiting and synchronization
• slowest process will determine overall performance
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Proper balance of MPI and OpenMP resources

Observations for FDS

• speedup of about 2, regardless of number of cores beyond 4
• OpenMP with more than 4 cores doesn’t give appreciable speedup
• given same number of cores to run on, most of the speed up is achieved by MPI

Strategy

• experiment with different mesh configurations
• in case of troubles try to move mesh boundaries away from areas of activity
• limit the number of threads used by each MPI process
(Example: for 2 Quad-Cores don’t use all 8 cores in an OpenMP simulation)
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