SIMLAB NEUROSCIENCE: SUPPORTING NEUROSCIENCE WITH HPC

04.10.2018 | Prof. Abigail Morrison

Mitglied der Helmholtz-Gemeinschaft

AREAS OF RESEARCH & COLLABORATION

• Simulation Engineering

• Simulation Science

• Analysis and Visualization

• Neuroimaging Pipeline

SLNS RESEARCH CONTRIBUTIONS TO

- Arbor CSCS, BSC, Palermo, Yale
- NEST INM-6, NMBU, BU-Wuppertal
- The Virtual Brain
 INM-7, Charité, U Indiana, CNRS, Aix-Marseille
- Interactive Steering & Visualisation RWTH
- JUPex

U Graz

- Modular science workflow
- ICEI Fenix
 - Benchmarking
 - Use cases

ARBOR

(WP 7.4)

- Simulator for networks of morphologically detailed neurons
- Optimized for heterogeneous many-core hardware
 - Modern C++ and CUDA
 - Optimized backends: CUDA, KNL and AVX2
- Modern development practices:
 - Open-source and open-development
 - Unit-testing, continuous integration and validation

(WP7.4)

- Simulator for large networks of spiking point neurons
- Optimized for homogeneous large-scale architectures, but scalable down to small clusters and laptops

Iargest general network simulation performed to date:

JOUEEN

- > 1.86x10⁹ neurons, 6000 synapses per neuron
- > 1.08x10⁹ neurons, 6000 synapses per neuron

- NEST (WP7.4)
 - Long standing collaboration with INM-6 and NMBU
 - Contributors spread all over Europe
 - Regular software releases, citable via zenodo to enhance reproducibility
 - SimLab foci:
 - Next generation kernel
 - HPC-amenable IO
 - DSL to generate neuron (synapse) models from high level description
 - Structural plasticity
 - Interactive steering capability
 - Visual connectivity generation
 - Verification of neuromorphic computing platforms

THE VIRTUAL BRAIN

- Simulator for whole brain neural mass models
- SimLab foci:
 - Flexible HPC kernel design allowing deployment on a variety of parallel architectures (GPUs, FPGAs) and specialized processors (KNC, KNL)
 - Interface between TVB front-end and highly optimized model specific kernels
 - Development of a DSL for automatic generation of neural mass models
 - Performance enhancement of TVB simulation and analysis tools

Forschungszentrum

INTERACTIVE STEERING & VISUALISATION

- Tool based on nett software framework developed at RWTH Aachen
- Facilitates interactions with NEST simulations during run time:
 - Change parameters, visualize effects
 - Visually guided parameter exploration
 - E.g. to find connectivity parameters for TVB models

JUPEX

(WP7.3 & WP9.4)

(Diaz-Pier et. al. 2017)

- Addresses the problem of parameter space exploration and optimization for large scale complex simulations on HPC systems
- Extends the UNICORE and JUBE frameworks developed in the JSC to provide a flexible platform for parameter exploration using well known optimization algorithms

MODULAR SCIENCE

(WP7.1.2)

- Orchestration of scientific applications to deploy complex workflows on HPC systems
 - > APIs for the communication of data between different applications
 - Wrapper software to allow deployment and monitoring of these applications on hybrid HPC resources
 - Interactive visualization front end to define workflows and explore results

SIMLAB NEUROSCIENCE

Bridging Neuroscience & HPC

