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Transistors per dollar (millions)

20 1 K.Boahen, 2017

1: : | No more progress from smaller transistors
14 -

o] New ARCHITECTURES suddenly interesting !
8 -

j T First : Make use of CMOS devices

- Then: Pave the way for non-CMOS

180 nm 130 nm 90nm 65nm 40nm 28 nm 20nm 14nm 10 nm
2002 2004 2006 2008 2010 2012 2014 2015 2017*

Brain-inspired, brain-derived or neuromorphic computing

Definition Transferring aspects of structure and function
from biological substrates to electronic circuits

Structure : Cells — Networks — Connections
Function : Local Processing — Communication — Learning
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Assets of brain inspired computing o
0.01 */Brain

© Larry Smarr, Calit

> Energy efficiency
» Compactness

10' 10 10° 10* 10° 10° 107 10° 10°

Clock Frequency (Hz)
» Fault tolerance .
> Speed Conventional
» Configuration and learning replace programming computing is moving

> Scalability away from the brain



Neuromorphic : why and how ?

Future computing based on Understanding
biological information “ biological information
processing processing

Y ' 4

Requires model system to test principles
Two fundamentally different modeling approaches

° SYMBOLIC MODEL (Turing)

represents model parameters as symbols (binary numbers)

represents function as instructions (algorithms) Com.blned Into
hybrid system
° PHYSICAL MODEL (non Turing)

represents model parameters as physical quantities (like the brain)
represents function as circuit dynamics (physical laws)



Same transistors - where’s the neuron ?

Intel Corporation The BrainScaleS Project

Not to scale
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The simulation approach nest::

. (X
Weak scaling (sizeup) on modern petascale many-processor machines initiative

Jordan, Jakob, et al. Extremely scalable spiking neural network simulation code: from laptops to
exascale computers. Frontiers in Neuroinformatics, 2018, 12. Jg., S. 2.



Neuromorphic implementations : Towards biological realism

SpiNNaker

Blologically

| nspired
Massively
Parallel
Architectures

Biological realism

Brainscale

ScaleS

Ease of use by traditional programming tools

Many-core (ARM) architecture
Optimized spike
communication network
Programmable local learning
x0.01 real-time to real-time

Full-custom-digital neural circuits
No local learning (TrueNorth)
Programmable local learning (Loihi)
Exploit economy of scale
x0.01 real-time to x100 real-time

Analog neural cores
Digital spike communication
Biological local learning
Programmable local learning
x10.000 real-time



The HBP Neuromorphic Computing Strategy
2nd generation emerged from co-design process in HBP

SpiNNaker

M any-core system
illion ARM cores | £%%
time simulator :

ted emulator

44 Cortex MA4F per chip
36 GIPS/Watt per chip

x10 performance with constant power

isticity processors
le hybrid plasticity
Active dendrites

These are neuromorphic processors

designed and built from the transistor up !



Assets of brain inspired computing ?

» Energy efficiency
» Compactness

» Fault tolerance
» Speed

» Configuration and learning replace programming
» Scalability




2"d generation — HBP made
65 nm prototype chip in the lab

® |nput: timing correlations, rates,
membrane potentials, external signals

= Change : synaptic weights,
neuromodulation, network structure

* Multicompartment neurons

* Active, non-linear dendrites,
backpropagating APs

 NMDA, Ca plateau potentials

» Public evaluation system by end-2018
» Full-size prototypes by mid-2020

» Full size system by 2023

» Funding pending



In-the-the-loop experiments on silicon — External computers only for set-up

A , 1.5mm
o )| ﬁ.a_.!' - .a_J F o
'lbut.ut':.ov-b
Prototype
Chip ) Plasticity

Processor
&

Digital

Backend

...........

it

Aamir, S. A. et al. (2018). An Accelerated LIF Neuronal Network Array
for a Large Scale Mixed-Signal Neuromorphic Architecture. IEEE
Transactions on Circuits and Systems I: Regular Papers , 1 14

Host PC <=

Compactness

FPGA

Required only for Setup ¢

USB

BrainScales-2

PPU Weight Updates
‘Environment B > Neural
Simulation Firing Rates, NetWOI'k
-Plasticity

Corrclation

Wunderlich et al., 2018, to be
submitted to Frontiers of
Neuromorphic Engineering



Playing
Field

State

Action

1234567 8..31

PONG : Closed action-
perception loop

Reinforcement learning by reward-
modulated spike-timing-dependent
plasticity

R-STDP : three-factor learning rule
that modulates the effect of
unsupervised STDP using a reward
signal

Inspired by the activity of
dopamine in the brain found to
encode expected reward (e.g.
Hollerman and Schultz, 1998)

A'u,)ij = 3= (R - b) " €ij

Wunderlich et al., 2018, to be
submitted to Frontiers of
Neuromorphic Engineering



o
Local Learning Demo on BrainScaleS 2

Environment & Firing Rates Weight Matrix

1.00

Performance
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2 3 4
Iteration #

Start |, m Slow-down factor: = 2x ~ 10x  100x

Elapsed Hardware Time: Os



Plasticity
& Environment

SNN
1G:"
10 °
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Time [s]

BSS2 Simulation Biology BSS2 Simulation
220pus 2.3 ms 200ms 180 ps 50 ms
13w 55m)  O(pl) 10 W 1.2)

BSS2 : Chip Simulation : NEST Biology : Real time

Speed and energy

Times and energies for
single experiment
iterations

Energy measured
directly through
procesdsor curent

Simulation running on
one single core of an
Intel i7-4771 CPU

Wunderlich et al., 2018, to be
submitted to Frontiers of
Neuromorphic Engineering



Learning success in software (NEST) with and without artificial noise
and hardware with intrinsic noise

Intrinsic Noise

Performance

Iteration # . 1'e5

Exploiting noise

Additional Noise

(&)
o
g
E
<
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Ay

0.2 Simulation —

— BSS2
| |
0.0 90 0.2 0.4 0.6 0.8 1.0
Iteration # les

Wunderlich et al., 2018, to be
submitted to Frontiers of
Neuromorphic Engineering
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Learning replaces
calibration
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Wunderlich et al., 2018, to be
submitted to Frontiers of
Neuromorphic Engineering



BrainScaleS-2

Next generation neuromorphic computing

Hybrid architecture analog-custom digital-processor nased




Coffee machines ?

More general : Distributed sensing / loT

loT Challenges

- Energy consumption
- Size

- Data transfer

- Local preporcessing
- Adaptation

NMC technology

- Energy efficiency
- Compactness
- Local intelligence (learning)

- Adaptability

All enabled by biological priciples



Concrete examples

- Personal medical devices (EEG, ECG, drug delivery, nrve
stimulation, brain implants, sensory substituation)
- Intelligent adaptive control (engines, manufacturing plants)

Project evaluation under way with BASF, Huawei, Airbus, Daimler

Why do we need big HBP systems, then ?

- Rapid prototyping (like LTL, continuous learning, one-shot
learning, dendritic computation)
- Neural FPGA concept



