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Several International Brain Research Projects Launched

"As humans, we can identify galaxies light years away, we can study
particles smaller than an atom. But we still haven’t unlocked the
mystery of the three pounds of matter that sits between our ears."”

- President Obama, April 2, 2013 at the launch of the US Brain Initiative

It is expected that better brain measurement technologies (focus of
US Brain Initiative) and detailed large-scale brain simulations (focus
of EU Human Brain Project, HBP) will substantially improve our
knowledge how the brain functions. This should also lead to better
treatments of brain disorders.
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From Brain Areas to Cortical Columns and Layers

What is the appropriate level of brain organization to explain
human perception, action and cogntion?

a

“To explain the mind, we have to show how minds are built from

mindless stuff, from parts that are much smaller and simpler
than anything we'd consider smart.”

Marvin Minsky, 1985

J

e To understand uniquely human aspects of cognitive processes
(perception, language, memory, emotion, thinking), detailed multi-
scale measurements of the living human brain are necessary
complementing animal and post-mortem brain research.

* Does functional MRI has the power to measure the right level of brain
organization, i.e. the relevant “small and simple parts™?

e Conventional functional human brain imaging reveals brain
organization only at the macroscopic level which limits its use in
understanding details about how mental content is represented.



How does the Brain “Compute” Cognitive Functions?

Questions such as:

e How is a specific face a’ Ciploi bk oot 4
identified? RN

* How is reading possible, o-,.e.a 0 S
e.g. hoyv does the brain % 7 > SR A,
recognizes letter “a? P e

In principle, we can provide '.‘.,.; o N R

answers to such questions ~NoRoR0 7 o Compiexcete (1)

e.g. with deep neural network .~ * %

models but we do not know T IHTI SALETIRALAL Ben e

the features and connections

used by the brain! - Grainger 2008, TICS

This leads to the following challenging goals for brain research:

» Reveal what features are coded within specialized brain areas!
 Reveal how features are connected within and across areas!



Relating Anatomy and Function Across Brain Scales
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Using neuroscience and computer simulations, a causal
understanding will emerge of how events at lower levels determine
events at higher levels - up to the level of the conscious mind.




Relating Anatomy and Function Across Brain Scales
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Conventional fMRI @ 3T
(2.0 - 3.0 mm)



Multi-Scale Functional Organization of the Human Brain
Macroscopic Level: Specialized Areas and Large-Scale Networks

Sensory input s — Behavior

What are elementary mental/neural functional components?
Understand categorical representations in “modules of the mind”

and how they are embedded in areas of the brain (e.g. face area
vs house/place area).

How do basic components interact and unfold over time?
Understand communication between brain areas, i.e. direction of
information flow (anatomical and effective connectivity).



Relating Anatomy and Function Across Brain Scales

Conscious Mind K\ K\ K\ K\

Neuroscience Networks Columns / Layers Circuits Neurons Synapses Neurotransmitter

-

Behaviour >

MESOSCALE MICROSCALE NANOSCALE

S~V S~ SV ~___ T

MACROSCALE

Cortical Columns and
Cortical Layers

High-Resolution fMRI @ 2 7T
(0.5-1.0 mm)



Multi-Scale Functional Organization of the Human Brain
Mesoscopic Level: Features Coded Within Specialized Areas

Sensory input s — Behavior

<~ What are elementary mental/neural functional components?
Understand “alphabet” of basic features within specialized brain

areas (e.g. face area) and how specific “words” (e.g. individual faces)
are encoded as distributed patterns across mapped features.

How do basic components interact and develop over time?
Understand interactions between features, e.g. how complex feature
codes in higher areas emerge from simpler features in lower areas.



Recorded 2D Slices (sagittal orientation)







Segmentation of Inner and Outer Boundary of the Cortex

Grey
matter

White
matter




Cortex Inflation




Subset of Major Fiber Tracts Revealed by Computational Tractography
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Goebel (2015). Revealing Brain Activity and White Matter Structure Using Functional and Diffusion-Weighted Magnetic Resonance Imaging.
In: Stippich C (Ed.), Clinical Functional MRI — Presurgical Functional Neuroimaging. Heidelberg: Springer



How Functional MRl Works

fMRI Signal = BOLD (Blood-Oxygenation-Level-Dependent) Signal

e When the neuronal activity in an area of the

brain increases after stimulation, that brain area
consumes more energy.

e The neuronal tissue gets its energy from
oxygenated hemoglobin in the blood.

e \Within a few seconds the blood flow and the
concentration of oxygenated hemoglobin in
the blood increases in that area - this is called
the hemodynamic response.

e Since oxygenated and deoxygenated
hemoglobin have different magnetic

properties, the hemodynamic response
can be imaged with functional MRI.







How does the Brain Solve Complex

Computational Vision Problems?

* Visual system covers about 25% of human
cerebral cortex containing ~5 billion neurons.

 Divide and conquer strategy:

 Specialized pathways (“what”, “where”).

I

* Specialized areas within pathways
(e.g. for color, texture, motion, shape, faces).

 “Soft” modular processing

« More than 15 visual areas exhibit full visual
field map (retinotopic organization).



Schematic Overview of Visual Cortex (as seen by fMRI)

“Where” pathway

(spatial attention,

motion, orientation
in space...)
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Goebel et al. (2012) The Visual System. In G.Paxinos,& J.K. Mai (Eds). The Human Nervous System 2nd edition.
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Retinotopic Organization of V1 and

Cortical Magnification

Visual field Visual field representation
<1, in the brain (V1)

Dumoulin (2011)

Schematic illustration of the visual field representation in primary visual cortex (V1). The visual
field representation is shown in the left panel; the center of the visual field is at the back circle
and the polar-coordinate axes — eccentricity and polar-angle — are identified. V1 lies within and
around the Calcarine sulcus (inset, dashed lines). The left visual field (left panel) is represented
on the right unfolded cortical surface (right panel) using a mathematical transformation proposed
by Schwartz (Schwartz et al., 1985) with cortical magnification (Daniel and Whitteridge, 1961).



Retinotopic Mapping of Early Visual Areas using the Population Receptive Field

(pRF) Estimation Technique (based on Dumoulin & Wandell, 2008)

rEneEn

Eccentricity Polar angle

Goebel R (2014). Functional organization of primary visual cortex. In: Brain Mapping: An Encyclopedic Reference.



Major Functionally Segregated Higher-Level Visual Areas

V5 — Motion
EBA — Bodies
LOC — Objects
— Colors
FFA — Faces
PPA — Places
VWEFA  —Words




Cytoarchitectonic Cortex-Aligned Probabilistic Atlas - Early Visual Areas

hOc1
hOc2
hOc3v

V1

V2d
V2v
V3v

» Reproducible when using leave-one out validation
» overlaps well with retinotopic functional map

Rosenke, Weiner, Barnett, Zilles, Amunts, Goebel, Grill-Spector (2017) A cross-validated cytoarchitectonic atlas of
the human ventral visual stream, Neuroimage,



Functional Parcellation of Occipito-Temporal Visual Cortex

Macro-Anatomically Aligned Average Cortex (N = 19)

Left Hemisphere Right Hemisphere

Rosenke, van Hoof, Frost, van den Hurk, Goebel (2018). Functional parcellation of occipito-temporal cortex — A
probabilistic atlas in volume and surface space, under review.



Functional Parcellation of Occipito-Temporal Visual Cortex

Probabilistic map after cortex (curvature) alignment of 19 subjects, 20% threhsold, RH

CoS-places

pFuUs-faces

Medial view Lateral view

Functional parcellation will be contributed to the HBP Atlas

Rosenke, van Hoof, Frost, van den Hurk, Goebel (2018). Functional parcellation of occipito-temporal cortex — A
probabilistic atlas in volume and surface space, under review.



Functional Parcellation of Occipito-Temporal Visual Cortex
Probabilistic map after alignment of 19 subjects, 20% threhsold, RH

pFus-
faces

CoS-places/  mFus- A
bodies faces PPA faces bodies

hMT+ pFus-
ITG®, faces

Ventral view Posterior-ventral view

Rosenke, van Hoof, Frost, van den Hurk, Goebel (2018). Functional parcellation of occipito-temporal cortex — A
probabilistic atlas in volume and surface space, under review.



Applications of Real-Time fMRI Data Analysis

* Neural activity is transformed into digital code
* Feedback for learning of self-regulation of brain activity
e Decoding / translating brain activity for BCI application
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fMRI Neurofeedback / BCI Technical Setup

Transfer stmulus
< fies 10 shared
n folder

Real-trme data analysis
Turbo-BrainVoyager

Connect video projecior

as second display
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Video projector MRI scanner
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Learning from a Meditation Expert

Subject: Matthieu Ricard
Ventral striatum activation is

modulated by intensity of
positive mental states.
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Neurofeedback and Reward Processing in the Ventral Striatum

Skottnik, Sorger, Kamp, Goebel (2018). Success and failure of controlling the fMRI-neurofeedback signal are
reflected in the striatum, submitted.




Neurofeedback Therapy for Patients with Depression

« Patients with recurrent depressive episodes after unsuccessful
conventional therapy

* Neurofeedback design
- learning to up-regulate brain activation within the emotion network

(amygdala, prefrontal cortex etc.)
- 4 sessions (within 4 weeks)
- one session = 3 runs (1h)

20s resting 20s regulating

Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian L., Sorger, B., Healy, D., Goebel, R. (2012).
Real-time Self-regulation of Emotion Networks in Patients with Depression. PLOS One, 7, €38115.



Neurofeedback Therapy for Patients with Depression

Behavioral effects of neurofeedback training after 4 sessions (HRSD score)

Depression score
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-> First clinical trial study in UK

Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian L., Sorger, B., Healy, D., Goebel, R. (2012).
Real-time Self-regulation of Emotion Networks in Patients with Depression. PLOS One, 7, €38115.




Neurofeedback Therapy for Parkinson Patients

I (Expecimental Group)
I (Control Group)
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Subramanian, Hindle, Johnston, Roberts, Husain, Goebel, Linden (2011) The Journal of Neuroscience, 31, 16309-16317.



Relating Anatomy and Function Across Brain Scales
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Ultra-High Field (UHF) MRI Center in Maastricht

Neuropartner / Incubator Cognitive Neuroscience Department
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Ultra-high field (UHF) imaging center “Scannexus”
(3 Tesla, 7 Tesla, 9.4 Tesla human MRI)

Brains Unlimited, Maastricht University




Scannexus Ultra-High Field MRI Center — The 9.4T

Head-only gradient coil (max. 80 mT/m at 400 mT/m/s slew rate) Shajan et al, Magn Reson Med. 2014 Feb;71(2):870-9

Acknowledgements to Benedikt Poser, Desmond Tse, Chris Wiggins, Klaus Scheffler and
Life Services (among others) to make it ready for Neuroscience applications!




Ex-Vivo MRl @ 9.4T — 200 Mircon T2*w Isotropic

Courtesy Alard Roebroeck




Functional Sub-Millimeter fMRI at 7 Tesla

Non-smoothed (motion corrected) data at 0.8 mm isotropic resolution (0.512 mm3)
Red and green colours indicate voxel preference for horizontal vs vertical motion

Goebel R, Schneider M, Ugurbil K, De Martino F, Yacoub E.(2017). in preparation.



Tonotopic Maps in the Inferior Colliculus @ 7 T

UHF fMRI reveals a feature map in a small structure that shows only unspecific response at conventional resolution
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De Martino, Moerel, van de Moortele, Ugurbil, Goebel, Yacoub, Formisano (2013). Spatial organization of
frequency preference and selectivity in the human inferior colliculus. Nature Communications, 4, 1386.



From Encoding to Decoding the Visual Field

Encoding Decoding

Visual Field Voxels pRFs Back-
Mapped on Brain Projected in Visual Field

Visual Stimulus

e ERC Proof-Of-Concept Grant (2018) “7 Tesla Mind’'s Eye BCI”
'fii;fj;’{ii.,'f_?;}. Follow-up grant of Advanced ERC grant “ColumnarCodeCracking”



Retinotopic Mapping of Early Visual Areas using Population Receptive Field (pRF)
Estimation (based on Dumoulin & Wandell, 2008)

Eccentricity Polar angbe

Goebel R (2015). Functional organization of primary visual cortex. In: A. Toga (Ed). Brain Mapping: An Encyclopedic Reference.



Decoding Imagined Letter Shapes from V1-V3 Activity @ 7T

Decoded
Percept

1T I
HE T C

Senden, Emmerling, van Hoof, Frost, Goebel (2018) Under review.




Decoding Imagined Letter Shapes from V1-V3 Activity @ 7T

Decoded
Mental Images

Decoded
Percepts

o'l i D) K
:

Senden, Emmerling, van Hoof, Frost, Goebel (2018) Under review.




De-Noising Brain Patterns using Multi-Layered Auto-Encoder

Pre-training \

We used a de-nolsing autoencoder in order to
learn efficient letter features (figure 2). The
autcencoder was trained to reproduce letter-
typical voxel co-activations (voxel patterns,
VPs).

Voxel patterns within each ROI were obtained
from perceptual data. First, single trial VPs
were obtained by averaging BOLD activations
in the range from +2 until +4 volumes after
trial onset. Grand average VPs per letter were
subsequently obtained by averaging over all
single trial VPs of a letter and z-normalizing.
These grand average VPs were used for
training.
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Figure 2: De-noising autoencoder.

An single-layer autoencoder was trained to reproduce
VPs after adding Gaussian noise (0 = 12). The number
of units in the hidden layer was 109% of ROI voxeis,
Hidden units had a sigmoid activation function while
output units activated linearly, The learning rate was
10, momentum was 0.9, batches had a size o!ly

and loss was measured by the sum of squar
distances. Training lasted 2500 iterations.

Reconstruction

Based on the mapping from visual field to
cortex given by pRFs, we obtained weights
mapping the cortex to a visual field image
(VFI):

Wiy = WieeD o

where D_,, is a diagonal matrix of the inverse
outdegree of each pixel in the VFI.

Using these weights, VFIs were calculated
from grand average VPs (VFI=W,, VP).
Since activations for imagery runs were noisy
compared to perceptual runs, they were
\deaned using the pre-trained autoencoder

prior to extracting grand average VPs.

Classification \
"

%)/ by " ) -\ L Yy S A

Figure 3: Letter-classifier.

A four unit softmax classifier was stacked on the
pretrained hidden layer (red weights). The network
was then trained to classify single trial VPs in imagery
runs, These runs were spiit into training and testing
datasets in a leave-one-run-out procedure. The

learing rate was 10, momentum was 0.9, bo?

had a size of 96, and loss was measured by Crosssy
entropy. Training lasted 250 iterations.

Senden, Emmerling, Frost, Goebel (2017). Faithful reconstruction of imagined letters from 7T fMRI measures in early visual
cortex. Poster presented at Organization of Human Brain Mapping Meeting, Vancouver, Canada.



Decoding Letter Shapes from V1 Activity @ 7T

P S
PRAaske

Decoded Images of the “mind’s eye” (top row) when using
deep auto-encoder network for “de-noising”

Senden, Emmerling, van Hoof, Frost, Goebel (2018) Under review.



Combining Neurofeedback and BCI Application

-

Time course of letter decoding when using
deep auto-encoder network for “de-noising”

erc ERC Proof-Of-Concept Grant (2018) “7 Tesla Mind’s Eye BCI”
Follow-up grant of Advanced ERC grant “ColumnarCodeCracking”

Mixed Neurofeedback-BClI: Letter shapes decoded and visualized to

participant are “frozen” and (local) imagery used to correct (add /
remove features) of letter shape



Columnar- And Laminar-Level Imaging with fMRI at 7+ Tesla

When a Quantitative Improvement of Spatial Resolution Turns into a Qualitative Change

- Individual neurons code Specialized brain area
features but they are too small
to be detected with high-

resolution human fMRI.

* |f neurons would be
distributed randomly, ultra-
high field imaging would provide D= - =)l
no qualitative improvement. Neurons (feature detectors)

 If neurons cluster into functional
units, we might be able to reveal
fine-grained “neuron-like” repre-
sentations at the columnar level.

« There is indeed substantial
evidence that many areas of the
cortex are organized in vertically
extending columns that contain
neurons with rather similar column size: ~ 0.5 - 1.5 mm
response profiles.

3T voxel size

7T+ voxel size




Features at Mesoscopic Scale: From Neurons to Columns

Prime example: Orientation selectivity in primary visual cortex

N\ —— * Responses of most V1 neurons are sharply

XS aippemmmapmns tuned for the orientation of a stimulus in a small
- AN region of the visual field

. S » Discovered by Hubel & Wiesel during

microelectrode recordings

Columns as basic computational
Paae e SN \ 3

units

—

They observed that neurons with similar response
preference cluster in “cortical columns”

T

Column

Column

_ Column
Hypercolumn

Torsten Wiesel



High-Resolution fMRI Reveals Orientation Columns in V1

Human - fMRI (SE, 7T) Monkey - Optical Imaging

Yacoub, Harel, Ugurbil (2008) Proc Natl Acad Sci USA, 105, 10607-10612.

Mapping of the (larger) ocular dominance columns had already been reported earlier (e.g. Cheng et
al., 2001; Goodyear and Menon, 2001; Yacoub et al., 2007) but this spin echo (SE) EPI study was the
first study revealing detailed maps of the much smaller orientation columns!



The Cortex as a 2D Sheet - Mapping Brain Activity on Flat Maps (3 Tesla)

stimulation output
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Sack,A, Camprodon, JA, Pascual-Leone, A & Goebel, R (2005). The dynamics of inter-hemispheric
compensatory processes in mental imagery. Science, 308, 702-704.



The Cortex Modelled as a 3D Structure (7+ Tesla)




Layer Sampling - The Book Principle

PASTHNE

AN

Bok (1929). A cortical cross section depicting six cytoarchitectonic layers. The volume fraction of a segment is
constant across the whole layer. This is possible because the thickness of the layer changes to compensate the
curvature.



Isotropic High-Resolution Scans and Grids for Advanced Analysis

Equi-Volume Stratification
Depth Volume Frustum

wer)

GM 20D Grid vl (A v JALA, *A

* 2D regular grid sampling using equi-volume model
(Bok, 1925, Waehnert et al., 2014)
* Layers (voxels between depth grids) can be filled in voxel space

Kemper, De Martino, Emmerling, Yacoub, Goebel (2017). High-resolution data analysis
strategies for mesoscale human functional MRI at 7 and 9.4 Tesla. Neuroimage, Accepted.



High-Resolution 2D Grid Sampling At Multiple Cortical Depth Levels

9 depth grids

Precisely aligned functional data is
sampled at each 2D grid point

Sampled data can be directly visualized
in 2D space using grids

A 2D grid coordinate refers to the same
vertical unit across levels (“column”)
Distance, area and volume values can
be easily calculated




High-Resolution 2D Grid Sampling At Multiple Cortical Depth Levels

Cortical Depth Sampling around Heschl’s Gyrus

De Martino, Moerel, Ugurbil, Yacoub, Goebel, Formisano (2015). PNAS, 112, 16036-1604.



Functional Grid Sampling and Methods for Alignment of Functional Volumes

* Sample functional data on cortical depth surface grids.
* Requires precise alignment of anatomy and function
and /or creation of cortical depth maps directly in functional data
* Requires also optimal within-run (motion correction), across-run,
across-session alignment of functional data volumes



Sampled Functional Grids Represented as Flat Depth Volumes

* Visualising stack of grids as conventional volumetric data
* Allows application of conventional analysis tools



Transfering Sub-MM Layer and Columnar-Level fMRI Data into Atlas

Sampled Contical Depth
—> Same cortical extent!

—> Project functional data!

"
@ Map Data
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Allas brain or other individual brain



Can we map features in
hMT with 7T fMRI?

— Flowfield
Stationary dots

V1/V2

V1/V2



Mapping Axis-of-Motion Columns in hMT/V5 at Different Cortical
Depth Levels using High-Resolution Grid Sampling (GRASE)

0.4 % relative depth

Zimmermann, Goebel, De Martino, Adriani, Van de Moortele, Feinberg, Chaimov, Shmuel, Ugurbil, Yacoub (2011). PLoS One, 6(12), e28716.



Mapping Axis-of-Motion Columns in hMT/V5 at Different Cortical
Depth Levels using High-Resolution Grid Sampling (GRASE)
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Zimmermann, Goebel, De Martino, Adriani, Van de Moortele, Feinberg, Chaimov, Shmuel, Ugurbil, Yacoub (2011). PLoS One, 6(12), €28716.



Measuring Binocular Disparity Tuning in hMT

B aC kg roun d Binocular Disparity O

The eyes
are fixating
on the red

gquare,

- \.
\ \
\
\

'l-"""xRays intersect
at center
/ of lens \
Fovea Fovea

Emmerling, Frost, Goebel (2016). work in progress.



Measuring Binocular Disparity Tuning in hMT

Disparity

Emmerling, Frost, Goebel (2016). work in progress.



Disparity Columns in Human Area hMT @ 7T

Disparity map in macaque MT.

De Angelis & Newsome (1999).

B ‘Near’ disparity (-0.05)

. “Far” disparity

+0.05)

(

Emmerling, Goebel et al (2016).



Columnar Coding in Primary Auditory Cortex

Subject 5

medal sogtenor

Lam
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Frequency "Myw

De Martino, Moerel, Ugurbil, Yacoub, Goebel, Formisano (2015). PNAS, 112, 16036-1604.



Going Beyond Feature Mapping: Using Mesoscopic

7T+ fMRI to Study Human Visual Cognition

To higher

cortical
areas Backwar.d
= N connections
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connections P
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To lower cortical areas
and Nonspecific
thalamus

Being able to separate fMRI responses from different columnar-level features and
cortical layers opens the possibility to relate cognitive phenomena like attention,
expectation, working memory, imagery and awareness to the human mesoscopic
scale for the first time providing substantially increased explanatory power for
testing and creating detailed cognitive theories of the mind.



Towards Mesoscopic Neural Correlates of Consciousness

Control Stimulus: Physical horizontal / vertical motion




Towards Mesoscopic Neural Correlates of Consciousness

Ambiguous Motion Quartett Stimulus with two squares alternating same positions:
Switches between horizontal / vertical motion perceived by observer (apparent motion)




Towards Mesoscopic Neural Correlates of Consciousness
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Predicting Perceived Direction of Motion from Activity Dynamics in
Direction-of-Motion Selective Columnar-Level 7T fMRI Responses

Schneider M, De Martino F, Goebel R.(2018). in preparation.



Towards Columnar-Level Neural Correlates of Consciousness

Physical Ambiguous
Motion Motion

Mhorizontal BMvertical
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7T fMRI: Horizontal vs vertical columnar-level responses in area hMT

Schneider M, De Martino F, Goebel R.(2018). in preparation.



HBP Co-Design Project “Visuo-Motor Integration”

“In this article, we argue that better understanding biological brains

could play a vital role in building intelligent machines.”
Hassabis et al., Neuron, 2017



Modeling Neuroimaging Data with Convolutional
Deep Neural Networks (DNNs)

* DNNs are designed with engineering goals, not to model brain computations.

e DNNSs are, however, useful tools for neuroscience to better understand
cognitive functions by constraining models based on complex brain data.

e DNNs may be improved using knowledge from the brain, e.g. convolutional
DNNs for object recognition emulate basic architecture of visual cortex.



Using Imaging Data as Constraints to Build

Embodied Brain Models

Using a top-down approach, create a deep, modular, recurrent neural
network model that performs visuo-motor tasks.

Build an embodied comprehensive model by targeting many visuo-
motor tasks and that can be extended by the community.

Derive architecture (representations and processes) of the model from
existing and new neuroscientific data and theories.

Run on a neurorobotics platform to test predicted human behaviour
(eye movement and arm movement control).

Validate architecture and operation of the model with neuroscientific
data and predict new data.

Use model to help understand patient data (Hemispatial Neglect).



An Embodied Large-Scale Architecture of

Visuo-Motor Integration

®lluman Brain Project
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Saliency Calculation - Previous Biological Models

= Color, intensity, and

orientation filters
» Linear combination into ey
single saliency map _—
¢ \L*/ 0

= Contains no semantic
information s

Adapted from Itti, Koch, & Niebur (1998).

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene
analysis. IEEE Transactions on pattern analysis and machine intelligence, 20(11), 1254-1259.



Saliency Calculation - Previous Biological Models

Model predictions from Itti, Koch, & Niebur (1998)
-> selection of low-level contrast



Human Saliency Calculation — Semantics Needed!

Locations humans look at

While brain atlas and fMRI data provides constraints for model architecture (macro-scale, 3T) and repre-
sentations (meso-scale, 7T), the connection weights within and between areas are largely unknown!

—> Train deep neural networks to fnd connection weights and useful representations in layers
—> Compare learned representations with measured high-resolution columnar representations



Human Saliency Calculation — Semantics Needed!

Soetal comwaton
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Yamins, DiCarlo (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience.



New Saliency Model - Adding Object Recognition CNN

Encoding Decoding

Neuroscience Perspective:
Adding ventral visual processing stream (1)
Adding semantic saliency based on recognized objects (2)



New Saliency Model - Validation using Human Data

Public saliency data sets

Images Participants Duration Procedure
MIT1003 1003 15 3s Eye tracking
CAT2000 2000 24 S5s Eye tracking
SALICON 15000 60 S5s Mouse tracking

Stimulus Saliency Map Fixations



New Saliency Model Produces Human-Level Performance

Deep Auto-Encoder N 2

P /84
predicting human generated  // /77 ] /-
saliency map from natural M (HAHA £ [_ﬂ.qf_]
images J J SN AN N
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Ground truth

Generalisation to novel images!



New Saliency Model — Basic Results




New Saliency Model — Basic Results

Deep Auto-Encoder
predicting human generated
saliency map from natural
images




Understanding Stroke Data Using Model: Unilateral Spatial Neglect

Fys—— Corbetta & Shwiman 2011

Collaboration with FLAG ERA “Brainsynch-Hit” Project, Lead PIl: Maurizio Corbetta



Summary and Conclusions

* To better understand the neural basis of (visual) cognitive functions, multiple
levels of brain organization need to be integrated.

e Sub-millimeter ultra-high field (f)MRI is an important tool helping to bridge
macro- and mesoscopic scales.

* Recent fMRI experiments show that it is possible to map known columnar-
level representations in specialised brain areas (V1, A1, hMT, STS/STG).

* Revealing feature codes in specialized brain areas at mesoscopic scale has
the potential to provide important new insights in the neural substrate of
human perception and cognition.

® |t is possible to read out the content of conscious percepts of ambiguous
stimuli from dynamic activation changes in axes-of-motion selective voxels in
area hMT+.

* Top-down modulation show effects either in superficial or deep layers.
Future studies need to investigate whether this is due to paradigm or
analyses differences.

* Neural deep network simulations constraint by feature codes and laminar
profiles from multiple brain areas will lead to a deeper understanding of how
visual perception and cognition emerge in the human brain.
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