
www.helmholtz.de

Bridging the gap: From large-scale
aggregation to individual prediction

Simon B. Eickhoff
INM-7, Brain & Behaviour
Systems Neuroscience, HHU Düsseldorf

Peer Review Only

  

 

 

Figure 2: Region based gray matter volume analysis in MDD using cytoarchitectonic maps of the human 
frontal pole  

Significant decrease of volume only for the left medial part of the frontal pole (left area Fp2) in MDD patients 
compared to controls (p<0.05; FDR corrected).  
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Experience, Health, Lifestyle ...

Cognitive performance, socio-affective functions, (psycho-) pathology

Structure, Function, Connectivity

Behavioral Data
As demonstrated for face judgments (Todorov, Said, et al. 2008;
Bzdok, Langner, et al. 2012), the ratings on vocal judgments
also feature high positive correlations between TR, AT, and HA
judgments and negative correlations between AG, AT, as well
as HA. The observation of older faces appearing less trust-
worthy, however, was not reproduced for judgments of voices.
Robust correlations between different judgments on faces have
prompted the concept that social trait judgments involve
emotional (Oosterhof and Todorov 2008) and cognitive neural
mechanisms (Cunningham et al. 2004). This hypothesis seems
to apply to judgments on voices in a similar manner, as indi-
cated by the behavioral results of the current study.

Stimulus Independent dmPFC in Social Trait Judgments
Comparison of the activation patterns during social trait judg-
ments (TR and AT) with those during basic emotional (HA)
and cognitive (AG) ones revealed that both social judgments
elicit specific neural activity increases in the left SFG, bilateral

central IPC (PGa), and dmPFC, extending into pACC. Contri-
butions of these brain regions to social trait judgments are,
therefore, unlikely to be explained by mere emotional or
cognitive processes involved in HA and AG judgments,
respectively.

The dmPFC potentially integrates information ranging from
reward value to behavioral planning on an abstract level and
has been discussed in the domains of action monitoring,
mental state inference, and social semantic knowledge about
others and self (Amodio and Frith 2006). Among different
action identification tasks, enhanced dmPFC activation was, in
particular, found when predictions on own and other goals in-
terfered with secondary demanding tasks (Ouden et al. 2005;
Spunt and Lieberman 2013). These findings indicate mediation
of attentional resources during social reasoning within the
dmPFC. Such high-level integration of knowledge about
oneself and others may be likely driven by task, independent
from the sensory input. Indeed, higher involvement of dmPFC
in social trait judgments on vocal stimuli, compared with HA
and AG judgments, was well in line with previous results ob-
tained in a very similar setup but using facial stimuli (Bzdok,
Langner, et al. 2012). Assuming social trait judgments to
specifically recruit dmPFC on a transmodal level, we hypoth-
esized our present results to overlap with the previous data. To
test this, we computed a conjunction between the neural corre-
lates during social judgments on faces (earlier study) and on
voices (present study). Intriguingly, this analysis revealed a
topographical overlap exclusively in the dmPFC (Fig. 3).

These results support the hypothesis of the dmPFC’s role in
top-down-driven integration of self- and other-related aspects
in social cognition (Bzdok, Langner, Schilbach, Engemann,
et al. 2013), which may be especially engaged in self-relevant
judgments (Seitz et al. 2009). Other than the basic emotional
judgment of another’s HA or the estimation of another
person’s AG, TR, and AT judgments imply a long-term predic-
tion for opportunities of social interaction, which may be
relevant for the judging individual. Hence, more than HA and

Figure 3. Demonstration of overlap between the main effects of social judgments (TR
and AT contrasted to HA and AG judgments) on voices (this study) and on faces
(Bzdok, Langner, et al. 2012). Note that congruent increases in brain activation were
exclusively located in the dmPFC, as here depicted on medial views of the
single-subject MNI template. All results are cluster-level corrected at P< 0.05
(cluster-forming threshold at voxel level: P<0.001).

Figure 4. (Left) Axial section showing functionally dissociated areas of the IPC participating in social judgments on voices; green, brain activity in social trait, relative to basic
emotion and age judgments; yellow, shared activation of social trait and basic emotion judgments; blue, shared activation of social trait and age judgments. (Right) Sagittal sections
through left IPC with relative BOLD changes in all 4 judgment conditions at each contrast’s maximum. TR, trustworthiness; AT, attractiveness; HA, happiness judgments; AG, age
judgments.
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Brain-phenotype association need large samples

Clear gradient of replicability across phenotypes
Previous studies for cognitive traits likely underpowered

Kharabian et al., submitted
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Standardized Processing Pipelines
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Machine-learning of variability & brain-behaviour
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Mapping brain areas across scales and features

Eickhoff et al., Nat Rev Neurosci 2018, Neuroimage 2017

in Supplementary Figure S5. These parcellations were com-
puted in fsaverage6 space, but the parcellations are publicly
available in fsaverage, fsLR, and MNI152 space.

Figure 4 (first row) shows the 7-network and 17-network
parcellations from Yeo et al. (2011). Figure 4 (second row) shows
the 400-area cerebral cortex parcellation where the color of
each parcel was assigned based on its spatial overlap with the
original 7-network and 17-network parcellations. The 400-area
parcellation were clustered (details in “Materials and Methods”
section) using a similar approach to Yeo et al. (2011), revealing
7 and 17 networks (Fig. 4 last row) that were visually very simi-
lar to the original networks (Fig. 4 first row).

Therefore, the gwMRF cerebral cortex parcellations largely
preserved the community or network structure of the original
data set, although there were some small differences. For
example, the default network (red) in the 7-network solution
(Fig. 4 last row) comprised more precuneus parcels compared
with the optimal assignment (Fig. 4 second row). Similarly,
the salience/ventral attention network (violet) in the 17-
network solution (Fig. 4 last row) comprised less precuneus
parcels compared with the optimal assignment (Fig. 4 second
row). Similar results were obtained with the 600-area,

800-area, and 1000-area parcellations (see Supplementary Figs
S6, S7, and S8).

Comparison of 400-Area Parcellation with Architectonic
and Visuotopic Areas

Figure 5 overlays parcels of the 400-area parcellation on the
boundaries of histologically defined architectonic areas 3, 4, 2,
hOc5, and 17 on the left cerebral cortical hemisphere (Fischl
et al. 2008; Van Essen et al. 2012a). Other architectonic areas
(including those on the right hemisphere) are shown in
Supplementary Figure S9.

There were generally good correspondences between parcel-
lation boundaries and architectonic areas, especially for areas
3, 4, 2, and area 17 in both hemispheres. However, it was also
clear that the parcellation fractionates primary areas into sub-
regions. In the case of somatomotor areas 3, 4, and 2, the frac-
tionation might correspond to somatotopic representations of
different body parts, consistent with motor task activations
(Fig. 6) and previous functional connectivity parcellations (Yeo
et al. 2011; Glasser et al. 2016). The parcellation also appeared
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Figure 4. Network structure is preserved in the 400-area parcellation. First row shows 7 and 17 networks from Yeo et al. (2011). Second row shows each gwMRF parcel
assigned a network color based on spatial overlap with networks from Yeo et al. (2011). Last row shows community structure of gwMRF parcellation after clustering.
Observe striking similarity between second and third rows, suggesting that network structure of the original resolution data is preserved in the 400-area parcellation.
Results for 600-area, 800-area, and 1000-area parcellations can be found in Supplementary Figures S6, S7, and S8.
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Sex classification by resting state connectivity 

Methods Introduction 
•  Cognitive sex differences well documented in 

behavioral and functional brain imaging 
(fMRI). 

•  Structural MRI has identified a structural 
sexual dimorphism of the human brain (3). 

•  Sex differences are also found in resting 
state (RS) brain connectivity (e.g. 8, 11).  

Aims of the present study: 
1.  Employ a machine learning approach on RS 

data to address generalizability of previous 
findings to independent samples.  

2.  Delineate regionally specific brain networks 
underlying successful classification of novel 
subjects’ sex.  

3.  Further understanding of a possible sexual 
dimorphism of the RS connectome.  

Samples:  
• Two mutually exclusive samples of unrelated 

subjects constructed of Human Connectome 
Project data (HCP S1200 release, (7)).  

• Sample 1:  434 subjects (217 males, age 
range: 22-37, mean age: 28.6 years), 

• Sample 2:  310 subjects (155 males, age 
range: 22-36, mean age: 28.5 years).  

• Males and females matched for age, twin-
status and education within each sample. 

Functional imaging data: 
• Resting state (RS): 1200 volumes per subject. 
• Siemens Skyra 3T scanner (TR=720ms). 
• Standard realignment and normalization. 
• FSL-FIX denoising (5). 
•  Individual RS connectomes extracted for 436 

ROIs based on (6) . 

Results 

1 ROI based minimum classification 
accuracy across both samples 

Whole Brain Connectome 
•  10-fold cross-validation performance for 

whole brain connectome:  
•  Sample 1: 79.3% 
•  Sample 2: 78.8%.  

•  Across sample classification performance:  
•  81.4%. 
(possibly due to larger training set) 
 

Whole brain RS connectome allows for  
the prediction of an unknown subject’s  
sex at ~ 80% accuracy! 

Regional Connectivity  
•  ROI based analyses identified regions for 

which the connectivity profile differentiated 
most strongly between the sexes. 

•  Highest regional accuracies: 
•  Medial brain regions in anterior cingulate 

and cingulate gyrus.  
•  Left lateralized inferior frontal gyrus and 

inferior temporal gyrus 
•  Regions displaying top classification 

accuracies highly similar for within-sample 
and between-sample classification.  

Classification accuracies for top ROIs 
are only marginally lower than whole 
connectome analyses! 

Discussion 

Sex Classification:  
•  Linear SVM (LibSVM toolbox, (1)) model for 

classification of subjects’ sex from RS 
connectome. 

• Nested optimization of cost parameter. 
•  10 repetitions of a 10-fold cross-validation. 
• Across sample classification:  fitting of the 

model on sample 1 and testing it on sample 2. 
 
Whole brain vs. ROI based classification: 
•  (1) Whole brain connectome. 
•  (2) Each individual ROI’s connectivity profile 

(436 parcels). 

Result Summary: 
• ROI based analyses performed separately for 

each sample and conservatively characterized 
by minimum across the two samples.  

 

•  Both within- and between-sample cross-
validation allowed reliable classification of 
unknown subjects’ sex from RS connectivity 
profiles ! robust sexual dimorphism of 
the resting state connectome. 

•  Predictive power of local brain connectivity 
almost as high as whole brain connectivity  
!  regionally specific effects. 

•  Within- and between-sample prediction 
based on highly similar brain regions ! 
reliability of findings. 

•  Regions with top prediction power are mainly 

    cognitive control of emotion (2,4). 
•  Regions most clearly differentiating between 

the sexes are related to cognitive control of 
behaviour and emotion. 

•  Findings might help explain why sex 
differences are mostly found in cognitive 
strategies employed by men and women, 
but not in behavioural performance per se. 

•  Results substantiate a sexual dimorphism 
in RS connectivity !  male and females 
differ not only in brain structure, but also in 
functional brain organization.  

2 

    located along (anterior) cingulate cortex. 
•  Cort ical regions with top predict ion 

accuracies are left lateralized. 
•  Left inferior frontal inter-hemispheric 

connectivity has been shown to vary 
across the menstrual cycle in women, but 
to remain stable in men (9).  

•  Similar frontal regions reported in relation to 
differing cognitive strategies between the 
sexes (10). 

•  Sex differences in cingulate cortex reported 
in connection with emotional reactivity and  

 

    (1) L Cingulate Gyrus, BA 24 (75.52%, 75.29%)  
•  (2) L Ant Cingulate, BA 32 (74.32%, 74.56%)  
•  (3) L Ant Cingulate, BA 24 (73.25%, 73.80%) 
•  (4) R Cingulate Gyrus, BA 31 (73.25%, 73.19%) 
•  (5) R Caudate (72.52%73.70%) 
•  (6) L Inf Temporal G, BA 20 (72.38%, 73.60%) 
•  (7) L Inf Frontal G, BA 47 (73.27%, 72.32%) 
•  (8) R Inf Frontal G, BA 47 (72.32%, 72.60%) 
•  (9) L Med Frontal G, BA 11 (73.13%, 72.31%) 
•  (10) R Ant Cingulate, BA 24 (72.29%, 73.32%) 
 
 
 
 
 
- 
. 

Classification accuracy for the whole connectome analysis and the ten ROIs 
with highest classification accuracy across sample 1 and sample 2 

ROI based classification accuracy 
for between-sample classification 
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in Supplementary Figure S5. These parcellations were com-
puted in fsaverage6 space, but the parcellations are publicly
available in fsaverage, fsLR, and MNI152 space.

Figure 4 (first row) shows the 7-network and 17-network
parcellations from Yeo et al. (2011). Figure 4 (second row) shows
the 400-area cerebral cortex parcellation where the color of
each parcel was assigned based on its spatial overlap with the
original 7-network and 17-network parcellations. The 400-area
parcellation were clustered (details in “Materials and Methods”
section) using a similar approach to Yeo et al. (2011), revealing
7 and 17 networks (Fig. 4 last row) that were visually very simi-
lar to the original networks (Fig. 4 first row).

Therefore, the gwMRF cerebral cortex parcellations largely
preserved the community or network structure of the original
data set, although there were some small differences. For
example, the default network (red) in the 7-network solution
(Fig. 4 last row) comprised more precuneus parcels compared
with the optimal assignment (Fig. 4 second row). Similarly,
the salience/ventral attention network (violet) in the 17-
network solution (Fig. 4 last row) comprised less precuneus
parcels compared with the optimal assignment (Fig. 4 second
row). Similar results were obtained with the 600-area,

800-area, and 1000-area parcellations (see Supplementary Figs
S6, S7, and S8).

Comparison of 400-Area Parcellation with Architectonic
and Visuotopic Areas

Figure 5 overlays parcels of the 400-area parcellation on the
boundaries of histologically defined architectonic areas 3, 4, 2,
hOc5, and 17 on the left cerebral cortical hemisphere (Fischl
et al. 2008; Van Essen et al. 2012a). Other architectonic areas
(including those on the right hemisphere) are shown in
Supplementary Figure S9.

There were generally good correspondences between parcel-
lation boundaries and architectonic areas, especially for areas
3, 4, 2, and area 17 in both hemispheres. However, it was also
clear that the parcellation fractionates primary areas into sub-
regions. In the case of somatomotor areas 3, 4, and 2, the frac-
tionation might correspond to somatotopic representations of
different body parts, consistent with motor task activations
(Fig. 6) and previous functional connectivity parcellations (Yeo
et al. 2011; Glasser et al. 2016). The parcellation also appeared
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Figure 4. Network structure is preserved in the 400-area parcellation. First row shows 7 and 17 networks from Yeo et al. (2011). Second row shows each gwMRF parcel
assigned a network color based on spatial overlap with networks from Yeo et al. (2011). Last row shows community structure of gwMRF parcellation after clustering.
Observe striking similarity between second and third rows, suggesting that network structure of the original resolution data is preserved in the 400-area parcellation.
Results for 600-area, 800-area, and 1000-area parcellations can be found in Supplementary Figures S6, S7, and S8.
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in Supplementary Figure S5. These parcellations were com-
puted in fsaverage6 space, but the parcellations are publicly
available in fsaverage, fsLR, and MNI152 space.

Figure 4 (first row) shows the 7-network and 17-network
parcellations from Yeo et al. (2011). Figure 4 (second row) shows
the 400-area cerebral cortex parcellation where the color of
each parcel was assigned based on its spatial overlap with the
original 7-network and 17-network parcellations. The 400-area
parcellation were clustered (details in “Materials and Methods”
section) using a similar approach to Yeo et al. (2011), revealing
7 and 17 networks (Fig. 4 last row) that were visually very simi-
lar to the original networks (Fig. 4 first row).

Therefore, the gwMRF cerebral cortex parcellations largely
preserved the community or network structure of the original
data set, although there were some small differences. For
example, the default network (red) in the 7-network solution
(Fig. 4 last row) comprised more precuneus parcels compared
with the optimal assignment (Fig. 4 second row). Similarly,
the salience/ventral attention network (violet) in the 17-
network solution (Fig. 4 last row) comprised less precuneus
parcels compared with the optimal assignment (Fig. 4 second
row). Similar results were obtained with the 600-area,

800-area, and 1000-area parcellations (see Supplementary Figs
S6, S7, and S8).

Comparison of 400-Area Parcellation with Architectonic
and Visuotopic Areas

Figure 5 overlays parcels of the 400-area parcellation on the
boundaries of histologically defined architectonic areas 3, 4, 2,
hOc5, and 17 on the left cerebral cortical hemisphere (Fischl
et al. 2008; Van Essen et al. 2012a). Other architectonic areas
(including those on the right hemisphere) are shown in
Supplementary Figure S9.

There were generally good correspondences between parcel-
lation boundaries and architectonic areas, especially for areas
3, 4, 2, and area 17 in both hemispheres. However, it was also
clear that the parcellation fractionates primary areas into sub-
regions. In the case of somatomotor areas 3, 4, and 2, the frac-
tionation might correspond to somatotopic representations of
different body parts, consistent with motor task activations
(Fig. 6) and previous functional connectivity parcellations (Yeo
et al. 2011; Glasser et al. 2016). The parcellation also appeared
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Figure 4. Network structure is preserved in the 400-area parcellation. First row shows 7 and 17 networks from Yeo et al. (2011). Second row shows each gwMRF parcel
assigned a network color based on spatial overlap with networks from Yeo et al. (2011). Last row shows community structure of gwMRF parcellation after clustering.
Observe striking similarity between second and third rows, suggesting that network structure of the original resolution data is preserved in the 400-area parcellation.
Results for 600-area, 800-area, and 1000-area parcellations can be found in Supplementary Figures S6, S7, and S8.
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Can we accurately predict sex of a new subject from region-wise FC profiles?
(SVM, nested optimization, between-sample prediction, N=434 / 310)

Mapping fingerprint – phenotype relationships
Language
Emotion
Reward

Cogn. Control

Weis et al., submitted



Standardized Processing Pipelines

Consolidated
functional data

Atlases and
Parcellations

Machine-learning of variability & brain-behaviour
relations in health and disease

High-throughput analytics & Simulation

Imaging
Behaviour
Genetics

Pr
io

r k
no

w
le

dg
e 

on
 b

ra
in

 o
rg

an
iz

at
io

n



Phenotype

Connectivity

Meta-Analyses: Priors for individual prediction

Nostro et al., 2018, Pläschke et al., 2017, cf. Schilbach et al., 2014



Standardized Processing Pipelines

Consolidated
functional data

Atlases and
Parcellations

Machine-learning of variability & brain-behaviour
relations in health and disease

High-throughput analytics & Simulation

Simulation

Imaging
Behaviour
Genetics

Pr
io

r k
no

w
le

dg
e 

on
 b

ra
in

 o
rg

an
iz

at
io

n



Mesoscopic modelling of whole-brain dynamics

in Supplementary Figure S5. These parcellations were com-
puted in fsaverage6 space, but the parcellations are publicly
available in fsaverage, fsLR, and MNI152 space.

Figure 4 (first row) shows the 7-network and 17-network
parcellations from Yeo et al. (2011). Figure 4 (second row) shows
the 400-area cerebral cortex parcellation where the color of
each parcel was assigned based on its spatial overlap with the
original 7-network and 17-network parcellations. The 400-area
parcellation were clustered (details in “Materials and Methods”
section) using a similar approach to Yeo et al. (2011), revealing
7 and 17 networks (Fig. 4 last row) that were visually very simi-
lar to the original networks (Fig. 4 first row).

Therefore, the gwMRF cerebral cortex parcellations largely
preserved the community or network structure of the original
data set, although there were some small differences. For
example, the default network (red) in the 7-network solution
(Fig. 4 last row) comprised more precuneus parcels compared
with the optimal assignment (Fig. 4 second row). Similarly,
the salience/ventral attention network (violet) in the 17-
network solution (Fig. 4 last row) comprised less precuneus
parcels compared with the optimal assignment (Fig. 4 second
row). Similar results were obtained with the 600-area,

800-area, and 1000-area parcellations (see Supplementary Figs
S6, S7, and S8).

Comparison of 400-Area Parcellation with Architectonic
and Visuotopic Areas

Figure 5 overlays parcels of the 400-area parcellation on the
boundaries of histologically defined architectonic areas 3, 4, 2,
hOc5, and 17 on the left cerebral cortical hemisphere (Fischl
et al. 2008; Van Essen et al. 2012a). Other architectonic areas
(including those on the right hemisphere) are shown in
Supplementary Figure S9.

There were generally good correspondences between parcel-
lation boundaries and architectonic areas, especially for areas
3, 4, 2, and area 17 in both hemispheres. However, it was also
clear that the parcellation fractionates primary areas into sub-
regions. In the case of somatomotor areas 3, 4, and 2, the frac-
tionation might correspond to somatotopic representations of
different body parts, consistent with motor task activations
(Fig. 6) and previous functional connectivity parcellations (Yeo
et al. 2011; Glasser et al. 2016). The parcellation also appeared
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Figure 4. Network structure is preserved in the 400-area parcellation. First row shows 7 and 17 networks from Yeo et al. (2011). Second row shows each gwMRF parcel
assigned a network color based on spatial overlap with networks from Yeo et al. (2011). Last row shows community structure of gwMRF parcellation after clustering.
Observe striking similarity between second and third rows, suggesting that network structure of the original resolution data is preserved in the 400-area parcellation.
Results for 600-area, 800-area, and 1000-area parcellations can be found in Supplementary Figures S6, S7, and S8.
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3 mm isotropic; 124 spatial volumes). Prior to scanning, in order to ac-
climate subjects to the MRI environment and to help subjects learn to
remain still during the actual scanning session, a mock scanning ses-
sion was conducted using a decommissioned MRI scanner and head coil.
Mock scanning was accompanied by acoustic recordings of the noise
produced by gradient coils for each scanning pulse sequence. During
these sessions, feedback regarding head movement was provided using
the MoTrack motion tracking system (Psychology Software Tools, Inc,
Sharpsburg, PA). Motion feedback was only given during the mock scan-
ning session. In order to further minimize motion, prior to data acqui-
sition subjects' heads were stabilized in the head coil using one foam
pad over each ear and a third over the top of the head. During the rest-
ing-state scan, a Txation cross was displayed as images were acquired.
Subjects were instructed to stay awake, keep their eyes open, Txate on
the displayed crosshair, and remain still.

Structural image processing

A study-speciTc template was generated from a sample of 120 PNC
subjects balanced across sex, race, and age bins using the buildTem-
plateParallel procedure in ANTs (Avants et al., 2011a). Study-speciTc
tissue priors were created using a multi-atlas segmentation procedure
(Wang et al., 2014). Next, each subject's high-resolution structural im-
age was processed using the ANTs Cortical Thickness Pipeline (Tustison
et al., 2014). Following bias Teld correction (Tustison et al., 2010),
each structural image was diffeomorphically registered to the study-spe-
ciTc PNC template using the top-performing SyN deformation (Klein et
al., 2009). Study-speciTc tissue priors were used to guide brain extrac-
tion and segmentation of the subject's structural image (Avants et al.,
2011b).

BOLD time series processing

Task-free functional images were processed using the XCP Engine
(Ciric et al., In Preparation), which was conTgured to support the 14
pipelines evaluated in this study (see Fig. 1). Each pipeline was based
on de-noising strategies previously described in the neuroimaging lit-
erature. A number of preprocessing procedures were included across
all de-noising pipelines. Common elements of preprocessing included
(1) correction for distortions induced by magnetic Teld inhomogeneities

using FSL's FUGUE utility, (2) removal of the 4 initial volumes of each
acquisition, (3) realignment of all volumes to a selected reference vol-
ume using mcflirt (Jenkinson et al., 2002), (4) demeaning and re-
moval of any linear or quadratic trends, (5) co-registration of functional
data to the high-resolution structural image using boundary-based reg-
istration (Greve and Fischl, 2009), and (6) temporal Tltering using a
Trst-order Butterworth Tlter with a passband between 0.01 and 0.08 Hz.
We did not apply slice timing correction during preprocessing, as re-
cent data suggest that the interpolation that occurs may artiTcially re-
duce motion estimates (Power et al., under review). These preliminary
processing stages were then followed by the confound regression pro-
cedures described below. In order to prevent frequency-dependent mis-
match during confound regression (Hallquist et al., 2013), all regres-
sors were band-pass Tltered to retain the same frequency range as the
data. As in our prior work (Satterthwaite et al., 2012, 2013), the pri-
mary summary metric of subject motion used was the mean relative
RMS (root-mean-squared) displacement calculated during time series re-
alignment using mcflirt.

Overview of confound regression strategies

The primary objective of the current study was to evaluate the per-
formance of common de-noising strategies. We selected 14 de-noising
models, labelled 1 14 below, for evaluation (Fig. 1). Models 1 5 used
nuisance parameters derived from 6 movement estimates and 3 physi-
ological time series, as well as their temporal derivatives and quadratic
expansions.

Model 1. (2P) Used only the 2 physiological time series: mean signal
in WM and mean signal in CSF, and functioned as a base model for
comparison to other more complex confound regression models.
Model 2. (6P) Used only the 6 motion estimates derived from
mcflirt realignment as explanatory variables.
Model 3. (9P) Combined the 6 motion estimates and 2 physiological
time series with global signal regression. This model has been widely
applied to functional connectivity studies (Fox et al., 2005, 2009).
Model 4. (24P) Expansion of model 2 that includes 6 motion para-
meters, 6 temporal derivatives, 6 quadratic terms, and 6 quadratic ex-
pansions of the derivatives of motion estimates for a total 24 regres-
sors (Friston et al., 1996).

Fig. 1. Schematic of the 14 de-noising models evaluated in the present study. For each of the 14 models indexed at left, the table details what processing procedures and confound regres-
sors were included in the model. De-noising models were selected from the functional connectivity literature and represented a range of strategies.
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