

Global air quality mapping with explainable machine learning

JSC's End-of-Year Colloquium

8 DECEMBER 2022 I CLARA BETANCOURT I clara.betancourt@fz-juelich.de

IntelliAQ

Member of the Helmholtz Association

© Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Global air quality mapping with explainable machine learning

Ozone – a toxic trace gas

- Ozone mapping with machine learning
- Explainable Machine Learning
- The ozone map

THE EARTH'S ATMOSPHERE

Pollutants and trace gases make a difference!

The Earth's atmosphere

Air pollution

 \rightarrow Images by Pixabay

c.betancourt@fz-juelich.de

TROPOSPHERIC OZONE

A toxic greenhouse gas

Member of the Helmholtz Association

c.betancourt@fz-juelich.de

Global air quality mapping with explainable machine learning

- Ozone a toxic trace gas
- Ozone mapping with machine learning
- Explainable Machine Learning
- The ozone map

WHAT IS MAPPING?

From irregularly placed measurements to gridded data

Ozone measurements

Ozone mapping

THE BENEFITS OF MACHINE LEARNING

AQ-Bench dataset → Betancourt et al. 2021

The AQ-Bench dataset contains long-term air quality metrics and metadata at sites around the globe.

The air quality at a site is influenced by its surroundings.

The proposed machine learning task is to train a machine learning algorithm which maps from metadata to long-term air quality metrics at measurement sites.

c.betancourt@fz-juelich.de

OZONE MAPPING

c.betancourt@fz-juelich.de

WHAT DO WE WANT TO EXPLAIN?

Global air quality mapping with explainable machine learning

- Ozone a toxic trace gas
- Ozone mapping with machine learning
- Explainable Machine Learning
- The ozone map

GLOBAL GENERALIZABILITY

Cross validation (CV) on different spatial scales

RMSE = 4 ppb

4 ppb < RMSE < ~ 5 ppb

Member of the Helmholtz Association

c.betancourt@fz-juelich.de

APPLICABILITY

A look at the feature space

(method by Meyer et Pebesma, 2021)

- AQ-Bench dataset main cluster
- AQ-Bench dataset outliers

• Example gridded data points outside area of applicability

COMBINING THE FINDINGS

Generalizability and applicability

Member of the Helmholtz Association

c.betancourt@fz-juelich.de

Global air quality mapping with explainable machine learning

- Ozone a toxic trace gas
- Ozone mapping with machine learning
- Explainable Machine Learning
- The ozone map

JÜLICH Forschungszentrum

Member of the Helmholtz Association

c.betancourt@fz-juelich.de

CONCLUSIONS

- Use of geospatial data for data driven approach
- Explainable machine learning makes map trustworthy

FUTURE RESEARCH

- Method is suitable for other ecological variables
- Dynamical mapping, with transformers

CONCLUSIONS

Use of deospatial data for data driven approach Thanks for listening! Enjoy the Christmas season. es map trustworthy FUT \rightarrow Adobe stock image Method is suitable for other ecological variables

Dynamical mapping, with transformers

