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Learning via Generalization and Concepts

[Lake et al., Science 2015]
Member of the Helmholtz Association December 8, 2022 Slide 2



Neurons and Action Potentials

[US National Institute of Health]

Spiking Neural Network (SNN)

[Lobo et al., Neural Networks 121, 2020]
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Gradient Descent not possible on SNNs

ANN

[Lillicrap et al., Nature Reviews NS, 2020]
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Gradient Descent Issues with ANNs
• Problem of Vanishing and Exploding Gradients
• In backpropagation step → zero or huge gradients
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[Yegenoglu et al., LOD 2020]

Problem depends on:
• Initialization of weights e.g.
wi,j ∼ N (0, 1)

• Activation Functions
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Optimization with Learning to Learn

[Yegenoglu et al., Front. Comput. Neurosci. 2022]

Learning to Learn (L2L)
• Generalization on new data
sets via experience

• Parameter space exploration
• Variety of optimization
algorithms

• e.g. Ensemble Kalman Filter
(EnKF)
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Kalman Filter - Intuition
Prediction step

Based on e.g.
physical model

Prior knowledge
of state

Update step
Compare prediction
to measurements

 

Measurements

Next timestep

Output estimate
of state

G(u)
Model State

[https://en.wikipedia.org/wiki/Kalman_filter] modified
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Ensemble Kalman Filter [Iglesias et al., 2013]

un+1
j = un

j + C(Un)
(
D(Un) + Γ−1

)−1 (y− G(un
j )
)

(1)

• where Un
j = {u}Jj=1, n iteration index, J number of ensembles, y target

• C(Un) =
1

J

J∑
j=1

(uj − u)⊗ (G(uj)− G)T

• D(Un) =
1

J

J∑
j=1

(G(uj)− G)⊗
(
G(uj)− G

)T
• Γ = γI

Minimization problem: Φ(u, y) = ||y− G(un
j )||2Γ
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Classification with EnKF

• MNIST & Letter dataset
• Logistic function
• Optimizer: EnKF
• [Yegenoglu et al., LOD 2020]
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Reservoir Computing

[Avesani et al., Neural Networks 2015]

• input image encoded into firing rates
• fixed reservoir
• output connections are trained
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Optimizing with L2L a Spiking Neural Network
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Reservoir Fitness

• 98 individuals (connection
weights)

• 7 nodes à 16 tasks
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Swarm Optimization

• Foraging for food and avoiding obstacles
• Collaboration and communication
• Evolution over (long) time/generations

• here: optimize agents to help Nikolaus to collect presents
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Setting – Agents

(a) Nikolaus (b) Agent of Nikolaus aka angel (c) Presents
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Setting – Network & Environment

(a) Agent brain (b) Swarm collecting gifts
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Optimization
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Outlook

• Extend to different datasets
• Learning parameter mapping with ANNs (e.g. auto-encoder)
• Neuro-architecture search with evolutionary algorithms (neuroevolution)
• Swarm evolution using stigmergy: ants (multiple pheromones), drones
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Summary

• Training SNNs is not straightforward

• Optimization via L2L and EnKF

• Different learning tasks/applications
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Michael Herty

            Giuseppe Visconti

JARA|CSD

Abigail Morrison

                Sandra Diaz Pier           

                                   Kai Krajsek

Thank you for your attention
and a happy Christmas & new year

contact: a.yegenoglu@fz-juelich.de
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Appendix
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SGD & Adam: Backpropagated Gradients over Epochs
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(a) SGD: Mean and standard deviation of the
backpropagated gradients.
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(b) Adam: Mean distributions of activation values
over 50 epochs.
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Test Error for different Optimizers
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Mean test error (dark line) of the network for 10 runs trained for one epoch. The shaded area is
the standard deviation. [Yegenoglu et al., LOD 2020]
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Reservoir dynamics

[Maass et al., 2002]:
xM = (LMu)(t) (2)

xM reservoir state (activation patterns), u(·) spike sequence encoded input, LM filter for
transforming from input to reservoir

y(t) = fM (xm(t)) (3)

y(t) output, fM memory-less readout map
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Spiking Network Input Output Transformation

(a) Spike on intensity
change

Reservoir OutputEncoderInput
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(b) Highest activity (FR) is captured on the output via softmax
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Sampling step

• Problem of convergence
• Sampling step in which worst ρbest individuals are replaced by best ρworst ones

adding gaussian noise univariate or mulitvariate (gaussian mixture)
random pick of best or best pick first
e.g. 10% best replacing 10% worst
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Seperability of Firing Rates
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Algorithm for PCA on Covariance Matrix

• calculate/fit the PCA for cov mat on one output
• get n components of PCA
• check min and max create a mask with certain ranges e.g. −0.015 < n or n < 0.015

• apply the mask on the cov matrix to get important values
• repeat for other outputs as well
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Fitness function

Cost & Values of Ant Colony:

Behavior Value
Resting -0.5
Dropping Pheromone -0.05
Rotation -0.02
Movement -0.25
Return nest N 220
Touch food F 1.5
η 30.0
Timestep à 20ms 2000

fi =

Ts∑
t=1

 J∑
j=1

N (t)
i,j + F (t)

i,j − C(t)
i,j

+η (T − Ts) ,

where i is individual, j is ant, T total simu-
lation time, Ts spend simulation time
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Fitness Swarm
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Representation space

[Weidel et al., 2020]

• Specialized for particular sub-categories of the input space
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