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Abstract

1. Automatic Differentiation

▪ Adjoint mode automatic differentiation (AD) combines partial derivatives 

starting from the neural network output 

▪ Adjoint variables are computed for each forward variable representing the 

partial derivative of the output variable w.r.t. the forward variable 

▪ Requires keeping track of forward variables, e.g., by Directed Acyclic 

Graphs (DAG)
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▪ Most Deep Learning parallelization frameworks [1,2] follow a strict design 

pattern that favours a specific parallelization paradigm

▪ Existing communication primitives do not cover the MPI standard and in most cases 

do not provide automatic differentiation (E.g., PyTorch’s RPC-based distributed prototype [3] offers only automatic 

differentiation for P2P communication but not for collective communication )     

▪ This poster:

- Presents adjoint MPI concepts [4] in the context of Deep Learning (DL) for

distributed training

- Introduces an approach for preserving MPI operation orders in the backward

pass and for integrating MPI operations into the computational graph

- Demonstrates the usability of the adjoint MPI concept to non-additive 

separable loss functions as used in contrastive learning

2. Adjoint MPI

Adjoint MPI considers a subset of MPI calls (e.g., one sided communication is 

excluded) as differentiable transformation and identifies their adjoint counterpart

Adjoint MPI operations need to be attached to the computational graph and  

strictly applied in reverse order of their forward counterparts to avoid deadlocks:

▪ Consecutive MPI functions must be made dependent on each other to assure     

order preserving in the backward pass 

▪ All MPI primitives must be functions in a mathematical sense

MPI functions at their adjoint counterparts
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4. Distributed Contrastive Learning  

Code snippet: MPI_Gather approach                                                       Code snippet: MPI_Allgather approach 

Contrastive learning approaches, e.g., SimCRL [5] or CLIP [6] involve non-additive 

separable loss functions, i.e., they are not linear in data points, e.g.:

MPI_Allgather Approach (no_grad=True): 

Apply MPI_Allgather aggregating all network outputs on all nodes, compute the 

loss function on them and run backprop on each node independently  

Contrastive Learning Scheme 

Full loss function needs to be computed before backpropagation  

Forward Pass                                                       Backward Pass

MPI_Gather Approach: 

If aggregated data is too large for computation devices

it can be gathered on a device with larger memory via 

adjoint mpi_gather 

Forward Pass                                                                     Backward Pass

Contrastive learning teaches a model to 
compare  and identify differences or 
similarities between data samples to learn 
meaningful representations of the data.

SimCLR Loss:

Example of a computational graph of adjoint MPI 

with MPI primitives not strictly being functions                                                                             with MPI primitives being functions   

Experiment: The MPI_Allgather and MPI_Gather approaches have been tested with 

the  SimCLR model [5] parallelized with PyTorch’s Distributed Data Parallel (DDP)

module on a machine learning HPC system at the Jülich Supercomputing Centre. 
(4 NVIDIA Tesla V100 SXM2 GPUs with 32GB VRAM per card, 15 nodes in total, The GPUs communicate node-internally via an NVLink

interconnect. The system is optimized for GPUDirect communication across node boundaries, supported by 2x Mellanox 100 Gbit EDR InfiniBand links)

For the experiment 40 GPUs were used, whereas one GPU was held back 

for the loss function computation.

Backpropagation: Gradients are calculated efficiently by the
chain rule,  starting with the last computation

Forward mode Adjoint mode Forward mode Adjoint mode

Runtime experiment comparing different gather strategies                                

Experimental setup: The runtime was 

measured by applying the Resnext50_32x4d 

model to two views of images sized 128x128 

with a batch size of 256 and varying 

embedding dimensions. The resulting output

was fed into the  SimCLR loss function. 

Different strategies were compared,

including MPI_Allgather with backpropagation, 

MPI_Allgather without backpropagation, and 

MPI_Gather with backpropagation. The 

runtime has been averaged over 100 iterations.
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