
Adjoint MPI for Non-Additive Separable Loss Functions
Kai Krajsek (k.krajsek@fz-juelich.de)

SDL Neuroscience, Institute for Advanced Simulation (IAS)

Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH

52425 Jülich, Germany

Abstract

1. Automatic Differentiation

▪ Adjoint mode automatic differentiation (AD) combines partial derivatives

starting from the neural network output

▪ Adjoint variables are computed for each forward variable representing the

partial derivative of the output variable w.r.t. the forward variable

▪ Requires keeping track of forward variables, e.g., by Directed Acyclic

Graphs (DAG)

Input 5 neural network layers

Loss function

References:

[1] Sergeev, A. and Balso, M.D., (2018). Horovod: Fast and easy distributed deep learning in TensorFlow. In arXiv preprint arXiv:1802.05799

[2] Y. Huang et al., (2018). Pipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism. In arXiv preprint arXiv: 1811.06965

[3] Paszke, A. et al., (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing

Systems 32 (pp. 8024-8035)

[4] Utke, J., et al. (2009). Toward adjoinable MPI. In IEEE International Symposium on Parallel & Distributed Processing, pp. 1-8

[5] Chen, T., et al. (2020). A Simple Framework for Contrastive Learning of Visual Representations, Proceedings of the 37th International Conference on

Machine Learning, PMLR, (pp. 1597-1607)

[6] Radford, A. et al. (2021). Learning Transferable Visual Models From Natural Language Supervision, Proceedings of the 38th International Conference

on Machine Learning, ICML, (pp. 8748-8763)

▪ Most Deep Learning parallelization frameworks [1,2] follow a strict design

pattern that favours a specific parallelization paradigm

▪ Existing communication primitives do not cover the MPI standard and in most cases

do not provide automatic differentiation (E.g., PyTorch’s RPC-based distributed prototype [3] offers only automatic

differentiation for P2P communication but not for collective communication)

▪ This poster:

- Presents adjoint MPI concepts [4] in the context of Deep Learning (DL) for

distributed training

- Introduces an approach for preserving MPI operation orders in the backward

pass and for integrating MPI operations into the computational graph

- Demonstrates the usability of the adjoint MPI concept to non-additive

separable loss functions as used in contrastive learning

2. Adjoint MPI

Adjoint MPI considers a subset of MPI calls (e.g., one sided communication is

excluded) as differentiable transformation and identifies their adjoint counterpart

Adjoint MPI operations need to be attached to the computational graph and

strictly applied in reverse order of their forward counterparts to avoid deadlocks:

▪ Consecutive MPI functions must be made dependent on each other to assure

order preserving in the backward pass

▪ All MPI primitives must be functions in a mathematical sense

MPI functions at their adjoint counterparts

Acknowledgements:
The author wants to thank Dr. Phillipp Knechtges (German Aerospace Center (DLR), Institute for Software
Technology, High-Performance Computing) for discussing the adjoint MPI concept and Dr. Hanno Scharr (IAS-8,
Forschungszentrum Jülich GmbH) about exchange on application of adjoint MPI in Deep Learning.

Graph representation of MPI_Send and its adjoint counterpart

+s

4. Distributed Contrastive Learning

Code snippet: MPI_Gather approach Code snippet: MPI_Allgather approach

Contrastive learning approaches, e.g., SimCRL [5] or CLIP [6] involve non-additive

separable loss functions, i.e., they are not linear in data points, e.g.:

MPI_Allgather Approach (no_grad=True):

Apply MPI_Allgather aggregating all network outputs on all nodes, compute the

loss function on them and run backprop on each node independently

Contrastive Learning Scheme

Full loss function needs to be computed before backpropagation

Forward Pass Backward Pass

MPI_Gather Approach:

If aggregated data is too large for computation devices

it can be gathered on a device with larger memory via

adjoint mpi_gather

Forward Pass Backward Pass

Contrastive learning teaches a model to
compare and identify differences or
similarities between data samples to learn
meaningful representations of the data.

SimCLR Loss:

Example of a computational graph of adjoint MPI

with MPI primitives not strictly being functions with MPI primitives being functions

Experiment: The MPI_Allgather and MPI_Gather approaches have been tested with

the SimCLR model [5] parallelized with PyTorch’s Distributed Data Parallel (DDP)

module on a machine learning HPC system at the Jülich Supercomputing Centre.
(4 NVIDIA Tesla V100 SXM2 GPUs with 32GB VRAM per card, 15 nodes in total, The GPUs communicate node-internally via an NVLink

interconnect. The system is optimized for GPUDirect communication across node boundaries, supported by 2x Mellanox 100 Gbit EDR InfiniBand links)

For the experiment 40 GPUs were used, whereas one GPU was held back

for the loss function computation.

Backpropagation: Gradients are calculated efficiently by the
chain rule, starting with the last computation

Forward mode Adjoint mode Forward mode Adjoint mode

Runtime experiment comparing different gather strategies

Experimental setup: The runtime was

measured by applying the Resnext50_32x4d

model to two views of images sized 128x128

with a batch size of 256 and varying

embedding dimensions. The resulting output

was fed into the SimCLR loss function.

Different strategies were compared,

including MPI_Allgather with backpropagation,

MPI_Allgather without backpropagation, and

MPI_Gather with backpropagation. The

runtime has been averaged over 100 iterations.

Forward mode Adjoint mode

	Slide 1

