

SIMULATION AND DATA LABORATORY NUMERICAL QUANTUM FIELD THEORY

FROM FEMTOVERSE TO EXASCALE: STRONG CORRELATION AND SCALING

Research on numerical field theory

- · Particle physics, nuclear physics
- · Carbon nanosystems
- Algorithms with exascale perspective
- Optimized software and libraries

Community support

- · User training: lectures, workshops and schools
- · Collaboration with user groups
- · Data management and analysis tools

Numerical field theory

Particle physics:

- Standard model and χPT parameters from ab initio simulations
- Phenomenology from lattice simulations of QCD + QED
- · Resonances and scattering

Nuclear physics:

- Phenomenological properties of the nucleon
- Nuclear potentials from lattice QCD simulations

Carbon nanosystems:

- · Graphene, nanotubes
- Hubbard, phenomenological potentials
- Machine learning methods addressing "sign problem"

Highlight

Ab initio calculation of the neutron-proton mass difference Science, 347 (2015), 1452

HPC research and development

- Algorithms for modular and heterogeneous supercomputers
- · Multilevel methods
- · Highly scalable implementations
- Kernel identification and low level (assembly, intrinsics) optimization
- Custom-tailored low-level communication libraries
- Exascale research and co-development with HPC hardware vendors

Community support

- Workshops and schools ("Lattice practices")
- · Lectures (Bonn, Wuppertal)
- · Optimized implementations
- Data repositories (ILDG, DESY, PUNCH4NFDI)

Collaboration partners

 CaSToRC, DESY, Bonn, BUW, Mainz, RU, Rome, MIT, BNL, SUNY, UA, NMSU, UMD

Contact: s.krieg@fz-juelich.de | Website: www.fz-juelich.de/ias/jsc/sdlnqft