
Part 1: Porting and Supporting GPUs at CSCS

JSC GPU Seminar Series

Ben Cumming, CSCS

January 28, 2020

Introduction: CSCS and SSL

CSCS: Swiss National Supercomputing Center

§ Headquarters and machine room located in Lugano

§ Offices in at ETHZ in Zürich

CSCS is accessible for scientists around the world via open, peer-reviewed calls:

§ ‘small’ proposals (<1M node hours) → via national call

§ ‘large’ proposals (>1M node hours) → via PRACE

GPUs @ CSCS 4

GPUs in production at CSCS

§ CSCS was an early adopter of GPU technology

§ Motivated by limits to CPU scaling in the face of power limitations and market forces (video

games!)

GPUs @ CSCS 5

§ 2011: Tödi

§ Cray XK7 (NV-K20 GPU)

§ testing and development.

§ 2013: Piz Daint

§ Cray XC30

§ 5000+ nodes NV-K20X GPU

§ #3 TOP 500, #1 Green 500

§ 2016: Piz Daint upgrade

§ Cray XC50

§ 5700 Nodes NV-P100 GPU

§ #6 TOP 500 today

§ 2016: Kesch

§ Cray CS-Storm Cluster

§ Nodes with 8 K80 GPUs
§ First national production weather system to use GPUs

The start of a larger trend…

GPUs will power ever increasing proportion of the top capability systems

§ With the ratio of GPUs to CPU sockets increasing!

§ Summit [3:1]

§ Cray Shasta [4:1]

§ CSCS successor to Daint

§ Perlmutter

§ Aurora

§ Frontier

§ Marconi100 @ Cineca [2:1]

§ JUWELS GPU Booster @ JSC [2:1]

§ EuroHPC Pre-Exascale ~150 PetaFLOP systems (Cineca, BSC, CSC) [?:1]

§ Applications that don’t run on GPUs won’t run at scale in the near future…

§ … and risk becoming irrelevant

6

DOE Pre-Exascale and Exascale systems

Practical FLOPs

§ HPL results don’t necessarily translate to real-world applications

§ Many early users of Piz Daint didn’t see benefits without GPU-enabled applications

§ Getting ~100% of users running on GPUs doesn’t happen overnight

§ Porting legacy codes is… often really hard

§ Developing new codes with GPU performance and features of legacy apps is… daunting

§ CSCS needed to work with application developers, users and vendors

§ There is no one size fits all approach for every code, domain or community

§ CSCS needed to invest in software development to:

§ Target library development in areas where we can have the biggest impact for key

communities

§ Encourage adoption of up to date development practices

7

SSL Group: 30 Developers For Portable Scientific Applications

8

SSL Projects

9

Porting To GPU: Diving In

§ Analyze application

§ Which parts to move to GPU?

§ Which parts to keep on CPU?

10

1. Allocate memory on GPU or CPU
• malloc à cudaMalloc

• OpenACC/MP directives
2. Port the for loops

• CUDA kernels

• OpenACC/MP directives
• Library calls (cuBLAS, cuFFT)

3. Manual memory movement
• cudaMemcpy

• OpenACC/MP directives
Now we have two applications
• What if we want to add support for another architecture?

• OpenACC/OpenMP will diverge from original version
• Two applications are harder to maintain than one

Portable Approach: Separation of Concerns

11

Separate software in performance portable backends and rapid prototyping
frontends. Requires a change in how the community writes and maintains software

Thomas C. Schulthess

Nature Physics, 11 (5): 369-373, London: Nature Publ. Group, 2015.

CUDA is less than 3% of GPU-enabled SSL codebases

Less than or equivalent to CMake…

§ There is hope if we separate low-level backends

12

Arbor

DBCSR

Sirius

GridTools

Case Study: Sirius

Sirius

§ QuantumEspresso (QE) is a

key application for CSCS users

§ Ab initio quantum chemistry

methods of electronic-structure

calculation and materials modeling

§ Based on DFT methods

§ Written in F90 with MPI and

OpenMP

§ Heavy use of BLAS, LAPACK and

FFT libraries

14

Options for adding GPU support

§ Intercept calls to BLAS/LAPACK/FFT (e.g. MKL) and substitute with GPU-

accelerated equivalents (e.g. CUBLAS)

§ No performance gain due to high memory transfer overheads

§ Work directly on Fortran code: OpenACC or OpenMP 4.5

§ Requires large refactoring of QE (and buy in from developers)

§ OpenACC has tenuous vendor support outside of NVIDIA

§ OpenMP is still unproven in production for accelerators

§ Directives make code more complex, difficult to reason about, and rely on compiler magic.

§ It is very difficult to hire ambitious young developers to work on Fortran.

§ Rewrite basic DFT building blocks in a stand-alone library

§ Requires buy in from developers

15

SIRIUS library: separation of responsibilities

§ Library that presents abstraction of the algorithms and methods (describe what, not how)

§ Calling code does not interact directly with hardware back ends

16

Current software stack: not just QE

17

Performance Benchmarking of Sirius

18

Community

§ CSCS maintains a version of QE-Sirius that is always up to date with Master

§ Open source on GitHub

§ https://github.com/electronic-structure/SIRIUS

§ https://github.com/electronic-structure/q-e-sirius

§ Support for

§ Intel vectorized CPUs

§ NVIDIA GPUs (CUDA)

§ AMD GPUs (HIP/ROCM)

§ Available to users on Piz Daint as module

§ https://user.cscs.ch/computing/applications/sirius/

§ QE developers maintain a CUDA Fortran version of CP2K

§ Good performance

§ Less features than QE-Sirius

§ Not portable to non-NVIDIA architectures

19

Case Study: DBCSR

DBCSR: Sparse Matrix Multiplication Library

DBCSR is:

§ Distributed sparse matrix-matrix multiplication

§ Sparsity pattern of small dense blocks

§ MPI and OpenMP for distribution and scheduling

§ Sparse linear algebra backend for CP2K (quantum

chemistry)

DBCSR’s GPU back end:

§ Batched small dense block multiplication

§ Highly parameterized matrix-matrix CUDA kernels

21

DBCSR

§ DBCSR was implemented by CP2K developers with a library API

§ Development of backends has minimal impact on CP2K calling code

§ Library interface allowed one developer, Shoshana Jakobowits, to perform
the porting work described here

22

§ Originally a sub set of autotuned

kernels were pre-compiled into the

library.

§ Fall back to CPU if unavailable

DBCSR Step 1: Just in time (JIT) compilation

§ A single (m,n,k) kernel has many parameters to tune on GPU.

§ Autotune the parameters ahead of time, and store in library

§ JIT only the required kernels at run time

§ Make a best guess when autotuned parameters unavailable.

Insert_Footer 23

§ Reduced compilation time

§ Reduces binary size

§ Can generate code for all (m,n,k)

sets if good parameters available

DBCSR: machine learning to determine JIT parameters

§ Derive performance model

from a sub-set of auto-tuning

data that can predict

performance over entire

(m,n,k) space

§ Use boosted regression trees

§ Requires significant GPU

resources, but far less than

autotuning.

§ Predicted kernels are within
3% of autotuned kernels on

average.

24

DBCSR: machine learning portability

§ The cost of porting to new

architectures is greatly reduced

§ resources required to generate

inputs for new GPU are much

lower

§ Also applies to new generations of

NVIDIA GPU

25

DBCSR: AMD GPUs

§ … wait, the last slide showed results for AMD Mi50 GPUs

§ The CUDA back end took years to develop

§ The up from cost of library design required to add the first new back end.

§ The AMD HIP back end took 21 work days to write

§ Code generation means that there are no CUDA kernels to port

§ Wrapping HIP API calls with macros: cudaMalloc → hipMalloc

§ No code logic duplicated.

§ Large initial investment in developing DBCSR by CP2K developers

§ As a result CP2K can be adapted to new accelerator platforms more easily

§ CP2K will still be running on the biggest systems in 10 years time

§ … going strong for a legacy Fortran application!

26

Conclusion

Before diving into porting to GPU

§ Make the up front payment to refactor the code to use a domain-specific library

interface used by the front end code

§ Interface uses domain-specific and algorithmic language relevant to application

27

And now, for a presentation I prepared earlier…

Arbor – morphologically-detailed
neural network simulation on GPUs

JSC GPU Seminar Series
Nora Abi Akar, Ben Cumming, Vasileios Karakasis, Anne Küsters,

Wouter Klijn, Alexander Peyser, Stuart Yates
January 28, 2020

This research has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and

Innovation under the Specific Grant Agreement No. 720270
(Human Brain Project SGA1), and Specific Grant Agreement

No. 785907 (Human Brain Project SGA2).

Performance-portability: Arbor | 2

Arbor and its aims

Arbor is library for simulation of morphologically-detailed cells
in large networks on HPC systems.

the biggest users of HPC resources in HBP.

Arbor is being developed as part of HBP.

key aim: open research infrastructure for neuroscience.

key aim: enabling neuroscience on all HPC systems.

Requires a rich interface for defining models.

Simulation of electrical current in arbitrarily complex
morphologies.

Arbitrary ion channel and synapse models.

Inter-cell communication via spikes on arbitrary networks.

Performance-portability: Arbor | 3

User API: Separation of concerns

Step 1: Model abstraction (which model)

User models are described by a recipe, which take a cell
number and give:

a description of the cell

piecewise linear morphology
named regions and locations
ion channel and synapses

spike targets

spike sources

network connections that terminate on the cell

Recipe descriptions are functional, with lazy evaluation for
efficient parallel model construction.

Recipes contain no hardware or implementation details.

Performance-portability: Arbor | 5

Step 2: Hardware context (which hardware)

Select hardware resources
import arbor
from mpi4py import MPI

rec = my_recipe () # user defined model
ctx = arbor.context(threads =12, gpu_id=0, mpi=MPI.COMM_WORLD)

Users can select hardware resources at run time:

Number of threads in thread pool

Which GPU [optional]

Which MPI communicator [optional]

Performance-portability: Arbor | 6

Step 3: Instantiate model

Instantiate model on target compute resources
import arbor
from mpi4py import MPI

rec = my_recipe () # user defined model
ctx = arbor.context(threads =12, gpu_id=0, mpi=MPI.COMM_WORLD)
sim = arbor.simulation(rec , ctx)

A simulation object:

Instantiates target-specific data structures and call backs

Provides a generic interface for:

steering simulation
sampling spikes, voltages, etc.

Has no global state

multiple simulations can be instantiated simultaneously.

Caller can optionally provide hints on how to assign model to
hardware resources.

Performance-portability: Arbor | 7

Separation of concerns

Components communicate via APIs allow that allow
implementation of new cell models, communication methods,
hardware back ends etc.

recipe
(model

description)

context
(hardware
description)

simulation
state

cell
simulation

spike
exchange

CPU
implementation

GPU
implementation

NMODL

MPI
implementation

thread parallel
implementation

API API API

Performance-portability: Arbor | 8

Target-specific code generation

Cell models are complicated

Drawing of a Purkinje cell in the cerebellar cortex by Santiago Ramòn y Caja.

Performance-portability: Arbor | 10

Compartmentalization

Cables are broken into individual compartments, then ion
channels and synapses (mechanisms) are assigned to
compartments.

Each mechanism has
multiple ODEs per
compartment.

Fine-grained parallelism
(SIMD + SIMT) from one
compartment per lane for
current and ODE state
update.

Pack multiple cells together
to expose more SIMT
parallelism.

Pramod Kumbhar et. al. CoreNEURON : An

Optimized Compute Engine for the NEURON

Simulator, Frontiers in Neuroinformatics, 2019.

Performance-portability: Arbor | 11

Efficient dynamics

Two problems:

Efficient ion channel and synapse (mechanism) computation
requires hardware-specific implementations.

Extensibility demands that users can define their own
mechanisms.

It is not practical to explicitly implement optimized code for
each possible mechanism on each extant platform.

Solution: use a DSL to describe mathematics, and generate
optimized code from that for each platform.

Performance-portability: Arbor | 12

NMODL language

NMODL is a domain specific language for describing the
dynamics of ion channel and synapses inside compartments:

state and update rules (ODEs).

contribution to membrane current and ionic transport.

Synapse with exponential conductance decay
NEURON {

POINT_PROCESS expsyn
RANGE tau , e
NONSPECIFIC_CURRENT i

}
PARAMETER {

tau = 2.0 (ms)
e = 0 (mV)

}
STATE { g }
INITIAL { g=0 }
BREAKPOINT {

SOLVE state METHOD cnexp
i = g*(v - e)

}
DERIVATIVE state { g’ = -g/tau }
NET_RECEIVE(weight) { g = g + weight }

Performance-portability: Arbor | 13

CUDA for GPUs

We chose CUDA for the GPU back end:

Abor is a C++ library, and CUDA interfaces very well with
C++ (it is a superset of C++).

There was no domain-specific library for Arbor’s motifs
(e.g. BLAS).

Arbor developers had strong background in CUDA
development.

CUDA enforces a GPU-specific programming model.

OpenCL and HIP/ROCM programming models for GPUs
are almost one to one compatible with CUDA.

CUDA has strong support outside HPC (e.g. ML and AI).

Performance-portability: Arbor | 14

CUDA kernel generation

The modcc compiler generates for each target:

target-specific kernels for state update, current
contribution, event handling etc.

type-erased C++ wrapper for calling from simulation.

CUDA kernel for expsyn state integration

__global__

void nrn_state(mechanism_gpu_expsyn_pp_ params_) {

int n_ = params_.width_;

int tid_ = threadIdx.x + blockDim.x*blockIdx.x;

if (tid_ <n_) {

auto node_index_i_ = params_.node_index_[tid_];

value_type dt = params_.vec_dt_[node_index_i_];

value_type a_0_ , ll0_ , ll1_;

a_0_ = -1/params_.tau[tid_];

ll0_ = a_0_*dt;

ll1_ = (1+ 0.5* ll0_)/(1- 0.5* ll0_);

params_.g[tid_] = params_.g[tid_]*ll1_;

}

}

Performance-portability: Arbor | 15

Target-specific optimizations

Arbor’s NMODL compiler, modcc, can use algorithms that are
optimized for a specific target.

For example, the current update in expsyn i = g*(v-e):

Synapses on the same compartment contribute to the same
per-compartment current

There can be 10-10’000 synapses on a single compartment.

Race condition if when multiple threads add to the same
value.

CUDA atomic operations don’t scale well enough

Arbor uses an optimized reduce by key algorithm

Performance-portability: Arbor | 16

Reduce by key

Vanilla C++ reduce by key

void reduce_by_key(const double *values , const int *index ,

int n, double* out)

{

for (int i=0; i<n; ++i) {

out[index[i]] += values[i];

}

}

Note: this is also non-trivial to implement in the vectorized
multicore back end.
Note: index is monotonically increasing.

Performance-portability: Arbor | 17

Reduce by key

CUDA kernel for expsyn current update

__global__ void nrn_current(mechanism_gpu_expsyn_pp_ P_) {

int n_ = P_.width_;

int tid_ = threadIdx.x + blockDim.x*blockIdx.x;

unsigned lane_mask_ = __ballot_sync (0xffffffff , tid_ <

n_);

if (tid_ <n_) {

auto idx_ = P_.node_index_[tid_];

value_type conductivity_ = 0;

value_type v = P_.vec_v_[idx_];

value_type current_ = 0;

value_type i = 0;

i = P_.g[tid_]*(v-P_.e[tid_]);

// atomicAdd(P_.weight_[tid]*i, P_.vec_i_+idx_);

gpu:: reduce_by_key(P_.weight_[tid_]*i, P_.vec_i_ ,

idx_ , lane_mask_);

}

}

Performance-portability: Arbor | 18

Reduce by key performance

Reduce by key implementation outperforms atomics by a factor
of 2− 10× for more than a hundred synapses per compartment.

Time taken to update 10’000 synapses

1 10 100 1000
102
103
104
105
106

1.7×

2.4×
11.4×

synapses per compartment

ti
m
e
(m

s)

CUDA atomics

reduce-by-key

Performance-portability: Arbor | 19

Adding new backends

Adding a backend for a new architecture is reasonably
straightfoward. For example, adding a HIP backend for AMD
GPUs:

1. Hand port CUDA kernels generated by modcc as POC.

2. Write a modcc printer to generate these kernels.

3. Write back end specific glue and helper code.

4. Iterate on exisiting unit and integration tests.

key lesson: Write unit tests.

Performance-portability: Arbor | 20

GPU Performance

Benchmark Systems

Single node specs of Cray systems at CSCS.

Daint-mc Daint-gpu Tave-knl

CPU Broadwell Haswell KNL
memory 64 GB 32 GB 96 GB

CPU sockets 2 1 1
cores/socket 18 12 64
threads/core 2 2 4
vectorization AVX2 AVX2 AVX512
accelerator – P100 GPU –
interconnect Aries Aries Aries
MPI ranks 2 1 4

threads/rank 36 24 64
configuration – CUDA 9.2 cache,quadrant

compiler GCC 7.2.0 GCC 6.2.0 GCC 7.2.0

Performance-portability: Arbor | 22

Single node scaling table

Ring network of cells with 10’000 synapses, 145
compartments and random morphologies.

wall time (s) energy (kJ)

cells Arbor-mc Arbor-gpu Arbor-knl Arbor-mc Arbor-gpu Arbor-knl

32 0.35 2.06 1.13 0.04 0.25 0.17
64 0.39 2.10 1.29 0.05 0.25 0.22

128 0.75 2.44 1.71 0.11 0.33 0.34
256 1.42 2.97 2.28 0.25 0.43 0.55
512 2.66 4.19 3.36 0.58 0.67 0.97

1024 5.12 6.50 6.15 1.23 1.13 1.80
2048 10.04 11.11 12.27 2.53 2.10 3.63
4096 19.93 19.96 24.39 5.15 3.95 7.24
8192 39.66 37.24 48.65 10.37 7.71 14.45

16384 79.22 71.65 97.19 20.85 15.10 28.99

Performance portable across architectures.

Strong scaling higher on nodes with less parallelism.

GPU is also energy efficient.

Performance-portability: Arbor | 23

Conclusion

Retrospective

After 4 years of development we have come to realise that...

Unit tests pay you back more the longer you have them.

The amount of time spent hacking on low level GPU or
vectorized code is much less than the time spent on
interfaces.

But is less than the time spent hacking without interfaces.

The multi-core vectorization backend ultimately took the
same amount of effort as the CUDA backend.

Amdahl’s law matters on the GPU.

Performance-portability: Arbor | 25

Arbor is under active, open, development.

Arbor is open source software:

github.com/arbor -sim/arbor

Performance-portability: Arbor | 26

