
DIRECTIVE-BASED GPU PROGRAMMINGWITH OPENACC
JSC MSA:GPU SEMINAR
4 February 2020 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association

Outline
OpenACC Overview

GPU Acceleration Possibilities
History
OpenMP
Modus Operandi
OpenACC’s Models

OpenACC Directives
Parallelize Loops

parallel
loops
kernels

Data Transfers
Clause: copy
data
enter data

More Directives
Clause: gang
Clause: routine
Directive: host_data use_device

OpenACC Infrastructure
Software
Using OpenACC on JUWELS

OpenMP
Conclusions
List of Tasks

Member of the Helmholtz Association 4 February 2020 Slide 1 39

GPU Acceleration Possibilities

Application

Libraries Abstractions
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 4 February 2020 Slide 2 39

GPU Acceleration Possibilities

Application

Libraries Abstractions
Programming
LanguagesOpenACC

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 4 February 2020 Slide 2 39

OpenACC Mission Statement

[…]OpenACC [is] forwriting parallel programs in C, C++, and Fortran that
run identified regions in parallel on multicore CPUs or attached acceler-
ators.
[…] a model for parallel programming that is portable across operating
systems and various types of multicore CPUs and accelerators.
– OpenACC API Documentation, openacc.org

Member of the Helmholtz Association 4 February 2020 Slide 3 39

https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
openacc.org

OpenACC History

2011 OpenACC 1.0 specification is released at SC11
NVIDIA, Cray, PGI, CAPS

2013 OpenACC 2.0: More functionality, portability
2015 OpenACC 2.5: Enhancements, clarifications
2017 OpenACC 2.6: Deep copy, …

2018 OpenACC 2.7: More host, reductions, …

2019 OpenACC 3.0: Newer C++, more lambdas, …

Run as a non-profit organization, OpenACC.org
Members from industry and academia

→ https://www.openacc.org/ (see also: Best practice guide)

OpenACC-enabled
Applications

ANSYS Fluent
Gaussian
VASP
COSMO
GTC
SOMA
…

Member of the Helmholtz Association 4 February 2020 Slide 4 39

https://www.openacc.org/sites/default/files/inline-files/OpenACC_1_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2pt5.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://www.openacc.org/blog/whats-new-openacc-27
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://www.openacc.org/blog/openacc-30
https://www.openacc.org/
http://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
OpenMP 4.0/4.5: Offloading; compiler support improving (Clang, XL, GCC,…)

OpenACCmore descriptive, OpenMPmore prescriptive
OpenMP 5.0: Descriptive directive loop
Same basic principle: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel
jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 4 February 2020 Slide 5 39

OpenACC Overview
Modus Operandi

OpenACC Acceleration Workflow
Three-step program

1 Annotate code with directives, indicating parallelism
2 OpenACC-capable compiler generates accelerator-specific code
3 $uccess

Member of the Helmholtz Association 4 February 2020 Slide 7 39

1 Directives
pragmatic

Compiler directives state intend to compiler
C/C++
#pragma acc kernels
for (int i = 0; i < 23; i++)
// ...

Fortran
!$acc kernels
do i = 1, 24
! ...
!$acc end kernels

Ignored by compiler which does not understand OpenACC
OpenACC: Compiler directives, library routines, environment variables
Portable across host systems and accelerator architectures

Member of the Helmholtz Association 4 February 2020 Slide 8 39

2 Compiler
Simple and abstracted

Trust compiler to generate intended parallelism; always check status output!
No need to know details of accelerator; leave it to expert compiler engineersTuning possible

One code can target different accelerators: GPUs, CPUs→ Portability

Compiler Targets Languages OSS Free Comment

PGI NVIDIA GPU, CPU C, C++, Fortran No Yes Best performance

GCC NVIDIA GPU, AMD GPU C, C++, Fortran Yes Yes AMD support
coming up

Cray NVIDIA GPU C, C++ No No ???

Clang/LLVM CPU, NVIDIA GPU C, C++ Yes Yes
Via Clang

OpenMP backend;
very fresh!

Member of the Helmholtz Association 4 February 2020 Slide 9 39

https://www.pgroup.com/resources/accel.htm
https://gcc.gnu.org/wiki/OpenACC
https://pubs.cray.com/content/S-2179/9.1/cray-classic-c-and-c++-reference-manual/openacc-use
https://csmd.ornl.gov/project/clacc

2 Compiler
Flags and options

OpenACC compiler support: activate with compile flag
PGI pgcc -acc

-ta=tesla|-ta=multicore Target GPU or CPU
-ta=tesla:cc70 Generate Volta-compatible code

-ta=tesla:lineinfo Add source code correlation into binary
-ta=tesla:managed Use unified memory

-Minfo=accel Print acceleration info
GCC gcc -fopenacc

-fopenacc-dim=geom Use geom configuration for threads
-foffload="-lm -O3" Provide flags to offload compiler

-fopt-info-omp Print acceleration info

Member of the Helmholtz Association 4 February 2020 Slide 10 39

3 $uccess
Iteration is key

Serial to parallel: fast
Serial to fast parallel: more time needed
Start simple→ refine
Expose more andmore parallelism

⇒ Productivity

Because of generality: Sometimes not last bit of hardware performance accessible
But: Use OpenACC together with other accelerator-targeting techniques (CUDA, libraries,
…)

Expose
Parallelism

CompileMeasure

Member of the Helmholtz Association 4 February 2020 Slide 11 39

OpenACC Accelerator Model
For computation andmemory spaces

Main program executes on host
Device code is transferred to accelerator
Execution on accelerator is started
Host waits until return (except: async)

Two separate memory spaces; data
transfers back and forth

Transfers hidden from programmer
Memories not coherent!
Compiler helps; GPU runtime helps

Start main
program

Wait for code

Run code

Finish code
Return to host

Transfer

W
ai
t

Host Memory Device
Memory

DMA Transfers

Member of the Helmholtz Association 4 February 2020 Slide 12 39

A Glimpse of OpenACC

#pragma acc data copy(x[0:N],y[0:N])
#pragma acc parallel loop
{

for (int i=0; i<N; i++) {
x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}

}

!$acc data copy(x(1:N),y(1:N))
!$acc parallel loop

do i = 1, N
x(i) = 1.0
y(i) = 2.0

end do
do i = 1, N

y(i) = i*x(i)+y(i);
end do

!$acc end parallel loop
!$acc end data

Member of the Helmholtz Association 4 February 2020 Slide 13 39

OpenACC Directives

Parallel Loops: Parallel
An important directive

Programmer identifies block containing parallelism
→ compiler generates offload code
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

C OpenACC: parallel

#pragma acc parallel [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 4 February 2020 Slide 15 39

Parallel Loops: Parallel
An important directive

Programmer identifies block containing parallelism
→ compiler generates offload code
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

F OpenACC: parallel

!$acc parallel [clause, [, clause] ...]
!$acc end parallel

Member of the Helmholtz Association 4 February 2020 Slide 15 39

Parallel Loops: Loops
Also an important directive

Programmer identifies loop eligible for parallelization
Directive must be directly before loop
Optional: Describe type of parallelism

C OpenACC: loop

#pragma acc loop [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 4 February 2020 Slide 16 39

Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

C OpenACC: parallel loop

#pragma acc parallel loop [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 4 February 2020 Slide 17 39

Parallel Loops Example

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc parallel loop reduction(+:sum)
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}

sum = 0.0
!$acc parallel loop
do i = 1, N

x(i) = 1.0
y(i) = 2.0

end do
!$acc end parallel loop
!$acc parallel loop reduction(+:sum)
do i = 1, N

y(i) = i*x(i)+y(i)
sum+=y(i)

end do
!$acc end parallel loop

Kernel 1

Kernel 2

Member of the Helmholtz Association 4 February 2020 Slide 18 39

Compilation Result
PGI

$ pgcc -acc -ta=tesla:cc70 -Minfo=accel -o reduce-parallel.exe reduce-parallel.c
…
$ srun nsys profile --stats=true ./reduce-parallel.exe # N = 2000000
…
CUDA Kernel Statistics (nanoseconds)
Time(%) Total Time Instances Average Minimum Maximum Name
------- ----------- ---------- ---------- -------- -------- ------------------

43.1 37216 1 37216.0 37216 37216 main_13_gpu
32.6 28160 1 28160.0 28160 28160 main_8_gpu
24.2 20928 1 20928.0 20928 20928 main_13_gpu__red

CUDA Memory Operation Statistics (nanoseconds)
Time(%) Total Time Instances Average Minimum Maximum Name
------- ----------- ---------- ---------- -------- -------- ------------------

58.6 1842336 4 460584.0 1856 616032 [CUDA memcpy DtoH]
41.3 1298912 2 649456.0 649152 649760 [CUDA memcpy HtoD]
0.1 1888 1 1888.0 1888 1888 [CUDA memset]

Member of the Helmholtz Association 4 February 2020 Slide 19 39

Compilation Result
GCC

$ gcc -fopenacc -fopt-info-omp -o reduce-parallel.exe reduce-parallel.c
…
$ srun nsys profile --stats=true ./reduce-parallel.exe # N = 2000000
…
CUDA Kernel Statistics (nanoseconds)
Time(%) Total Time Instances Average Minimum Maximum Name
------- ----------- ---------- ---------- -------- -------- ------------------

99.4 5669158 1 5669158.0 5669158 5669158 main$_omp_fn$1
0.6 36256 1 36256.0 36256 36256 main$_omp_fn$0

CUDA Memory Operation Statistics (nanoseconds)
Time(%) Total Time Instances Average Minimum Maximum Name
------- ----------- ---------- ---------- -------- -------- ------------------

54.7 7373929 5 1474785.8 2112 2627491 [CUDA memcpy DtoH]
45.3 6104103 7 872014.7 1472 1608162 [CUDA memcpy HtoD]

Member of the Helmholtz Association 4 February 2020 Slide 19 39

More Parallelism: Kernels
More freedom for compiler

Kernels directive: second way to expose parallelism
Regionmay contain parallelism
Compiler determines parallelization opportunities

→ More freedom for compiler
Rest: Same as for parallel

 OpenACC: kernels

#pragma acc kernels [clause, [, clause] ...]

Member of the Helmholtz Association 4 February 2020 Slide 20 39

Kernels Example

double sum = 0.0;
#pragma acc kernels
{
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

$ pgcc -acc -ta=tesla:cc70 -Minfo=accel -o reduce-kernels.exe
reduce-kernels.c

main:
8, Generating implicit copyout(y[:],x[:])
10, Loop is parallelizable

Generating Tesla code
10, #pragma acc loop gang, vector(128) /* blockIdx.x

threadIdx.x */
14, Loop is parallelizable

Generating Tesla code
14, #pragma acc loop gang, vector(128) /* blockIdx.x

threadIdx.x */
16, Generating implicit reduction(+:sum)

$ gcc -fopenacc -fopt-info-omp -o reduce-kernels.exe reduce-kernels.c
reduce-kernels.c:8:10: optimized: assigned OpenACC seq loop
parallelism

Member of the Helmholtz Association 4 February 2020 Slide 21 39

kernels vs. parallel
Both approaches equally valid; can perform equally well
kernels

Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No branching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 4 February 2020 Slide 22 39

Data Transfers

Automated transfers: -ta=tesla:managed! (PGI)
Driver automatically determines neededmemory
Page-faulting mechanism
Data correctness

Manual transfers
More fine-grained control
Increased portability
Can perform better in many cases

Member of the Helmholtz Association 4 February 2020 Slide 23 39

Copy Clause

Clause to parallel or kernels region
Which variable to copy to/from device

C OpenACC: copy

#pragma acc parallel copy(A[start:length])
Also: copyin(B[s:l]) copyout(C[s:l]) present(D[s:l]) create(E[s:l])

Member of the Helmholtz Association 4 February 2020 Slide 24 39

Data Regions
Tomanually specify data locations

Defines region of code in which data remains on device
Data is shared among all kernels in region
Explicit data transfers
Clauses like before: copy, copyin, …

 OpenACC: data

#pragma acc data [clause, [, clause] ...]

Member of the Helmholtz Association 4 February 2020 Slide 25 39

Data Region Example

double sum = 0.0;
#pragma acc data copyout(y[0:N])

create(x[0:N])↪→
{
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc parallel loop
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}
}

$ pgcc -acc -ta=tesla:cc70 -Minfo=accel -o
reduce-data.exe reduce-data.c

main:
8, Generating create(x[:])

Generating copyout(y[:])
10, Generating Tesla code

11, #pragma acc loop gang, vector(128) /*
blockIdx.x threadIdx.x */

15, Generating Tesla code
16, #pragma acc loop gang, vector(128) /*

blockIdx.x threadIdx.x */
Generating reduction(+:sum)

15, Generating implicit copy(sum)

Member of the Helmholtz Association 4 February 2020 Slide 26 39

Data Regions II
Explicit copies: enter data directive

Define data regions, but not for structured block
Clauses executed at the very position the directive encountered
Closest to cudaMemcpy()
Still, explicit data transfers

 OpenACC: enter data

#pragma acc enter data [clause, [, clause] ...]
#pragma acc exit data [clause, [, clause] ...]

Member of the Helmholtz Association 4 February 2020 Slide 27 39

OpenACC Directives
More Directives

Launch Configuration
Specify number of threads and blocks

3 clauses for changing distribution of group of
threads (clauses of parallel region (parallel,
kernels))
Presence of keyword: Distribute using this level
Optional size: Control size of parallel entity

Gang

$

Workers

Vector

 OpenACC: gang worker vector

#pragma acc parallel loop gang worker vector
Size: num_gangs(n), num_workers(n), vector_length(n)

Member of the Helmholtz Association 4 February 2020 Slide 29 39

Accelerated Routines

Enable functions/sub-routines for acceleration
Make routine callable from device (CUDA: __device__)
Needed for binding, refactoring, modular designs, …

 OpenACC: routine

#pragma acc routine (name) [clause, [, clause] ...]

Member of the Helmholtz Association 4 February 2020 Slide 30 39

Interfacing to Other GPU Functions

OpenACC hides handling of CPU and GPUmemory pointer from user
OpenACC uses appropriate pointer in accelerated kernel
Interface to external GPU-accelerated routines: Use device-version of data pointer for
scope of structured block

→ Interoperate with GPU libraries (cuBLAS, cuFFT, CUDA, …)

Also:  deviceptr(ptr) , when externally-allocatedmemory is passed to OpenACC

 OpenACC: host_data use_device

#pragma acc host_data use_device(ptr)

Member of the Helmholtz Association 4 February 2020 Slide 31 39

Further Keywords
Directives

serial Serial GPU Region
wait Wait for any async operation

atomic Atomically access data (no
interference of concurrent
accesses)

cache Fetch data to GPU caches
declare Make data live on GPU for implicit

region directly after variable
declaration

update Update device data
shutdown Shutdown connection to GPU

Clauses
collapse Combine tightly-nested

loops
tile Split loop into two loops

(first)private Create thread-private
data (and init)

attach Reference counting for data
pointers

async Schedule operation
asynchronously

Member of the Helmholtz Association 4 February 2020 Slide 32 39

OpenACC Infrastructure

GPU Tools

OpenACC only interface
Backend: CUDA (for GPUs)

→ Use all CUDA tools
Profiler:
Legacy nvprof, Visual Profiler (to be deprecated soon)

New Nsight Systems, Nsight Compute

Debugger: cuda-gdb, cuda-memcheck
Also: PGI environment variables

PGI_ACC_TIME Lightweight command-line profiler
PGI_ACC_NOTIFY Print GPU-related events

Member of the Helmholtz Association 4 February 2020 Slide 34 39

GPU Tools

OpenACC only interface
Backend: CUDA (for GPUs)

→ Use all CUDA tools
Profiler:
Legacy nvprof, Visual Profiler (to be deprecated soon)

New Nsight Systems, Nsight Compute

Debugger: cuda-gdb, cuda-memcheck
Also: PGI environment variables

PGI_ACC_TIME Lightweight command-line profiler
PGI_ACC_NOTIFY Print GPU-related events

Member of the Helmholtz Association 4 February 2020 Slide 34 39

GPU Tools

OpenACC only interface
Backend: CUDA (for GPUs)

→ Use all CUDA tools
Profiler:
Legacy nvprof, Visual Profiler (to be deprecated soon)

New Nsight Systems, Nsight Compute

Debugger: cuda-gdb, cuda-memcheck
Also: PGI environment variables

PGI_ACC_TIME Lightweight command-line profiler
PGI_ACC_NOTIFY Print GPU-related events

$ PGI_ACC_NOTIFY=3 srun ./poisson2d
upload CUDA data file=/p/project/cjsc/aherten/MSA-Seminar-OpenACC/poisson2d.c
function=main line=104 device=0 threadid=1 variable=A bytes=16777216

…
launch CUDA kernel file=/p/project/cjsc/aherten/MSA-Seminar-OpenACC/poisson2d.c
function=main line=110 device=0 threadid=1 num_gangs=2046 num_workers=1 vector_length=128
grid=2046 block=128 shared memory=2048

…

Member of the Helmholtz Association 4 February 2020 Slide 34 39

MPI

OpenACC only interface
Backend: CUDA (for GPUs)

→ Use all CUDA-aware MPIs with host_data use_device

#pragma acc host_data use_device(A)
MPI_Sendrecv(A+i_start, nx, MPI_DOUBLE, top, 0, A+i_end, nx, MPI_DOUBLE, bottom, 0, ,);

Member of the Helmholtz Association 4 February 2020 Slide 35 39

Using OpenACC on JUWELS

PGI module load PGI/19.3-GCC-8.3.0

MPI module load MVAPICH2/2.3.3-GDR

Tools module load CUDA/10.1.105

GCC+OpenACC module use $PROJECT_cjsc/herten1/modulefiles
module load gcc-openacc/9.2.0
(Still testing!)

Member of the Helmholtz Association 4 February 2020 Slide 36 39

OpenMP GPUOffloading

OpenMP very similar to OpenACC
Compiler support: Clang, XL, GCC, AMD, Cray
Quality of generated GPU code improving…
Directives: Target, Teams, Distribute

!$omp target teams distribute parallel do simd
private(t) map(pi) reduction(+:pi)↪→

do i = 0, N-1
t = (i + 0.5) / N
pi = pi + 4.0 / (1.0+t*t)

end do
!$omp end target teams distribute parallel do simd

OpenMP

!$acc parallel loop reduction(+:pi)
do i = 0, N-1

t = (i + 0.5) / N
pi = pi + 4.0 / (1.0+t*t)

end do
!$acc end parallel

OpenACC

Member of the Helmholtz Association 4 February 2020 Slide 37 39

https://www.openmp.org/spec-html/5.0/openmpsu60.html#x86-2820002.12.5
https://www.openmp.org/spec-html/5.0/openmpse15.html#x57-910002.7
https://www.openmp.org/spec-html/5.0/openmpsu43.html#x66-1580002.9.4

Conclusions

Conclusions

OpenACC: High-level GPU programmingmodel
Compiler directives and clauses
#pragma acc parallel loop copyin(A[0:N]) reduction(max:err) vector
Start easy, optimize from there; express as much parallelism as possible
Interface to other GPU programmingmodels, libraries
JSC OpenACC course: October 2020

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 4 February 2020 Slide 39 39

https://preview.fz-juelich.de/SharedDocs/Termine/IAS/JSC/EN/courses/2020/gpu-openacc-2020.html
mailto:a.herten@fz-juelich.de

Appendix

Appendix
Glossary

Member of the Helmholtz Association 4 February 2020 Slide 2 5

Glossary I

AMD Manufacturer of CPUs and GPUs. 11, 43

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 13, 38, 39, 40, 41

GCC The GNU Compiler Collection, the collection of open source compilers, among
others for C and Fortran. 12

LLVM An open Source compiler infrastructure, providing, among others, Clang for C. 11

MPI The Message Passing Interface, a API definition for multi-node computing. 41

NVIDIA US technology company creating GPUs. 6, 11, 48, 49

Member of the Helmholtz Association 4 February 2020 Slide 3 5

Glossary II
OpenACC Directive-based programming, primarily for many-core machines. 2, 6, 7, 8, 9,

10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41,
42, 43, 45

OpenMP Directive-based programming, primarily for multi-threadedmachines. 2, 7, 11,
26, 43

PGI Compiler creators. Formerly The Portland Group, Inc.; since 2013 part of NVIDIA.
12, 38, 39, 40

Volta GPU architecture from NVIDIA (announced 2017). 12

CPU Central Processing Unit. 11, 35, 48

GPU Graphics Processing Unit. 11, 14, 35, 38, 39, 40, 41, 43, 45, 48, 49

Member of the Helmholtz Association 4 February 2020 Slide 4 5

References: Images, Graphics

[1] Bill Jelen. SpaceX Falcon Heavy Launch. Freely available at Unsplash. URL:
https://unsplash.com/photos/lDEMa5dPcNo.

Member of the Helmholtz Association 4 February 2020 Slide 5 5

https://unsplash.com/photos/lDEMa5dPcNo

	Outline
	OpenACC Overview
	GPU Acceleration Possibilities
	History
	openmp
	Modus Operandi
	*openacc's Models

	*openacc Directives
	Parallelize Loops
	Data Transfers
	More Directives

	*openacc Infrastructure
	Software
	Using *openacc on JUWELS

	*openmp
	Conclusions
	Appendix
	Appendix
	Glossary

	Glossary
	Acronyms
	References

