# **MSA SEMINAR: GPUS**

**Topics and Talks** 

## • Today (5 May):

Scaling Lattice QCD on many GPU Nodes of JUWELS (Eric Gregory, JSC, and Mathias Wagner, NVIDIA)

## • Next (19 May):

Plasma Physics with PlConGPU – Lessons learned from 10 years of living with the HPC hardware zoo (Michael Bussmann, HZDR)

- → <u>https://fz-juelich.de/ias/jsc/msa-seminar</u>
- → <u>https://fz-juelich.de/ias/jsc/msa-seminar-slides</u>



- After that:
  - ParFlow
  - GROMACS
  - Deep Brain
  - JUWELS Booster



# **ONLINE WEBINAR SETUP**

**Topics and Talks** 

- Webcams disabled to preserve bandwidth
- Questions welcome
  - During talk: As messages in chat
  - After talk: Everyone will be able to unmute themselves and ask; indicate by raising hand to be called

• This is new for us, feedback welcome!





#### LATTICE QCD ON JUWELS GPUS

May 5, 2020 | Eric B. Gregory | JSC



Member of the Helmholtz Association

### **OVERVIEW**

- Quarks & gluons
- Lattice QCD basics
- LQCD community software
- QUDA
- Experience with LQCD on Juwels GPUs



#### **QUANTUM-CHROMODYNAMICS (QCD)**





#### **QUANTUM-CHROMODYNAMICS (QCD)**













Proton is a *hadron*, a particle made of quarks bound together by the strong force.







- Quarks
  - Spin

  - Electric charge  $+\frac{2}{3}/-\frac{1}{3}$  Color charge (R B G)







- Quarks
  - Spin
  - Electric charge  $+\frac{2}{3}/-\frac{1}{3}$  Color charge (R B G)
- Gluons
  - Spin
  - color charge
     (R B G)
  - color anti-charge  $(\overline{R} \overline{B} \overline{G})$







- Quarks
  - Spin
  - Electric charge  $+\frac{2}{3}/-\frac{1}{3}$  Color charge (R B G)
- Gluons
  - Spin
  - color charge
     (R B G)
  - color anti-charge  $(\overline{R} \overline{B} \overline{G})$







- Quarks
  - Spin
  - Electric charge  $+\frac{2}{3}/-\frac{1}{3}$  Color charge (R B G)
- Gluons
  - Spin
  - color charge ( R B G)
    color anti-charge ( R B G)
- Quantum fluctuations

















"Color-confinement"











 $2 imes \textit{M}_{
m up}$ 

 $+M_{\rm down}$ 









 $\begin{array}{ll} 2\times \textit{M}_{\rm up} & +\textit{M}_{\rm down} \\ 2\times (2.2~{\rm MeV}) & +(4.7~{\rm MeV}) & \approx 9~{\rm MeV} \end{array}$ 

But ...

 $M_{
m proton} = 938 \, {
m MeV}$ 





 $\begin{array}{ll} 2 \times \textit{M}_{\rm up} & +\textit{M}_{\rm down} \\ 2 \times (2.2 \; {\rm MeV}) & + (4.7 \; {\rm MeV}) & \approx 9 \; {\rm MeV} \end{array}$ 

But ...



 $M_{
m proton} = 938 \text{ MeV}$ 





 $\begin{array}{ll} 2\times \textit{M}_{\rm up} & +\textit{M}_{\rm down} \\ 2\times (2.2~{\rm MeV}) & +(4.7~{\rm MeV}) & \approx 9~{\rm MeV} \end{array}$ 

But ...



 $M_{
m proton} = 938 \; {
m MeV}$ 

To understand properties of hadrons, we must take quantum fluctuations into effect.





#### Properties of hadrons

- mass
- internal structure
- decay probabilities
- ····



#### Properties of hadrons

- mass
- internal structure
- decay probabilities
- ....
- Existence of un-observed states



#### Properties of hadrons

- mass
- internal structure
- decay probabilities
- ....
- Existence of un-observed states
- BIG QUESTION:

#### Does

$$\{\text{experiment}\} - \{\text{theory}\} \stackrel{?}{=} 0$$



#### Properties of hadrons

- mass
- internal structure
- decay probabilities

• ...

- Existence of un-observed states
- BIG QUESTION:

Does

$$\{\text{experiment}\} - \{\text{theory}\} \stackrel{?}{=} 0$$

## Physics beyond the Standard Model?



In the continuum:

$$S_{
m QCD} = \int d^4x rac{1}{4} F^a_{\mu
u} F^a_{\mu
u} + \sum_f \int d^4x \overline{\psi}_f(x) \left(i\gamma_\mu D_\mu - m_f\right) \psi_f(x) = S_G + S_F$$



In the continuum:

$$S_{\rm QCD} = \int d^4x \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \sum_f \int d^4x \overline{\psi}_f(x) \left(i\gamma_\mu D_\mu - m_f\right) \psi_f(x) = S_G + S_F$$

Depend on gluon fields.



In the continuum:

$$S_{
m QCD} = \int d^4x rac{1}{4} F^a_{\mu
u} F^a_{\mu
u} + \sum_f \int d^4x \overline{\psi}_f(x) \left(i\gamma_\mu D_\mu - m_f\right) \psi_f(x) = S_G + S_F$$

Fermionic part – depends on quark fields  $\psi$ ,  $\overline{\psi}$ 



In the continuum:

$$S_{\rm QCD} = \int d^4x \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \sum_f \int d^4x \overline{\psi}_f(x) \left(i\gamma_\mu D_\mu - m_f\right) \psi_f(x) = S_G + S_F$$

Fermionic part – depends on quark fields  $\psi$ ,  $\overline{\psi}$ 

We calculate physical quantities by "path-integral" formulism:

$$\left\langle \mathcal{O} \right\rangle = rac{\int \mathcal{D}\left[\overline{\psi},\psi\right] \mathcal{D}\left[\mathbf{A}
ight] \mathcal{O}\mathrm{e}^{-i\mathbf{S}\left[\overline{\psi}\psi\mathbf{A}
ight]}}{\int \mathcal{D}\left[\overline{\psi},\psi\right] \mathcal{D}\left[\mathbf{A}
ight] \mathrm{e}^{-i\mathbf{S}\left[\overline{\psi}\psi\mathbf{A}
ight]}}$$



Perform non-perturbative calculation for a universe that

- is finite in size (with some boundary conditions)
- is discrete (Lattice!)
- has imaginary time  $t \longrightarrow it$





Perform non-perturbative calculation for a universe that

- is finite in size (with some boundary conditions)
- is discrete (Lattice!)
- has imaginary time  $t \longrightarrow it$





Perform non-perturbative calculation for a universe that

- is finite in size (with some boundary conditions)
- is discrete (Lattice!)
- has imaginary time  $t \longrightarrow it$

$$\left\langle \mathcal{O} \right\rangle = \frac{\int \mathcal{D}\left[\overline{\psi}, \psi\right] \mathcal{D}\left[\mathbf{A}\right] \mathcal{O}e^{-S[\overline{\psi}\psi A]}}{\int \mathcal{D}\left[\overline{\psi}, \psi\right] \mathcal{D}\left[\mathbf{A}\right] e^{-S[\overline{\psi}\psi A]}}$$





Perform non-perturbative calculation for a universe that

- is finite in size (with some boundary conditions)
- is discrete (Lattice!)
- has imaginary time\*  $t \longrightarrow it$

$$\left\langle \mathcal{O} \right\rangle = \frac{\int \mathcal{D}\left[\overline{\psi}, \psi\right] \mathcal{D}\left[\mathbf{A}\right] \mathcal{O}\mathrm{e}^{-\mathbf{S}\left[\overline{\psi}\psi\mathbf{A}\right]}}{\int \mathcal{D}\left[\overline{\psi}, \psi\right] \mathcal{D}\left[\mathbf{A}\right] \mathrm{e}^{-\mathbf{S}\left[\overline{\psi}\psi\mathbf{A}\right]}}$$

\*Necessary mathematical trick — allows calculation of *some* quantities.





## **QCD ON THE LATTICE**





## **QCD ON THE LATTICE**

Quark fields \(\phi(x)\) live on lattice sites
 3 (or 3 \times 4)-component, complex:

$$\phi(\boldsymbol{x}) = \left(\begin{array}{c} \phi_0\\ \phi_1\\ \phi_2 \end{array}\right)$$





## **QCD ON THE LATTICE**

Quark fields \(\phi(x)\) live on lattice sites
 3 (or 3 \times 4)-component, complex:

$$\phi(\boldsymbol{x}) = \left( egin{array}{c} \phi_0 \ \phi_1 \ \phi_2 \end{array} 
ight)$$

■ Gauge fields U<sub>µ</sub>(x) = exp(iagA(x)) live on links: (3×3)-component, complex

$$U_{\mu}(x)=\left(egin{array}{cccc} U_{00} & U_{01} & U_{02} \ U_{10} & U_{11} & U_{12} \ U_{20} & U_{21} & U_{22} \end{array}
ight)$$



ŵ



The continuum action term

$$S_F = \sum_f \int d^4x \overline{\psi}_f(x) \left(i \gamma_\mu D_\mu - m_f\right) \psi_f(x)$$

contains derivative which are discretized, e.g.:

$$\mathcal{S}_{F} = \sum_{f} \sum_{xy} \overline{\phi}_{x}^{f} \left( \gamma_{\mu} \mathcal{D}_{\mu} + m_{f} 
ight)_{xy} \phi_{y}^{f}$$



The continuum action term

$$S_F = \sum_f \int d^4x \overline{\psi}_f(x) \left(i \gamma_\mu D_\mu - m_f\right) \psi_f(x)$$

contains derivative which are discretized, e.g.:

$$\mathcal{S}_{F} = \sum_{f} \sum_{xy} \overline{\phi}_{x}^{f} \left( \gamma_{\mu} \mathcal{D}_{\mu} + \mathcal{m}_{f} 
ight)_{xy} \phi_{y}^{f}$$

"fermion matrix", *M*[*U*]

Slide 12



The continuum action term

$$S_F = \sum_f \int d^4x \overline{\psi}_f(x) \left(i \gamma_\mu D_\mu - m_f\right) \psi_f(x)$$

contains derivative which are discretized, e.g.:

$$\mathcal{S}_{F} = \sum_{f} \sum_{xy} \overline{\phi}_{x}^{f} \left( \gamma_{\mu} \mathcal{D}_{\mu} + \mathcal{m}_{f} 
ight)_{xy} \phi_{y}^{f}$$

"fermion matrix", *M*[*U*]

$$M_{xy}[U] = \sum_{\mu=0}^{3} \frac{1}{2a} \left( U_{\mu}(x) \delta_{x+a\hat{\mu},y} - U_{-\mu}(x) \delta_{x-a\mu,y} \right) + \delta_{xy} m$$



The continuum action term

$$S_F = \sum_f \int d^4 x \overline{\psi}_f(x) \left( i \gamma_\mu D_\mu - m_f 
ight) \psi_f(x)$$

contains derivative which are discretized, e.g.:

$$\mathcal{S}_{\mathcal{F}} = \sum_{f} \sum_{xy} \overline{\phi}_{x}^{f} \left( \gamma_{\mu} \mathcal{D}_{\mu} + m_{f} 
ight)_{xy} \phi_{y}^{f}$$

"fermion matrix", *M*[*U*]

$$M_{xy}[U] = \sum_{\mu=0}^{3} \frac{1}{2a} \left( U_{\mu}(x) \delta_{x+a\hat{\mu},y} - U_{-\mu}(x) \delta_{x-a\mu,y} \right) + \delta_{xy} m$$

• Very large (dim $\sim 10^7$ —10<sup>8</sup>), sparse



The continuum action term

$$S_F = \sum_f \int d^4 x \overline{\psi}_f(x) \left( i \gamma_\mu D_\mu - m_f 
ight) \psi_f(x)$$

contains derivative which are discretized, e.g.:

$$\mathcal{S}_{\mathcal{F}} = \sum_{f} \sum_{xy} \overline{\phi}_{x}^{f} \left( \gamma_{\mu} \mathcal{D}_{\mu} + \mathcal{m}_{f} 
ight)_{xy} \phi_{y}^{f}$$

"fermion matrix", *M*[*U*]

$$M_{xy}[U] = \sum_{\mu=0}^{3} \frac{1}{2a} \left( U_{\mu}(x) \delta_{x+a\hat{\mu},y} - U_{-\mu}(x) \delta_{x-a\mu,y} \right) + \delta_{xy} m$$

- Very large (dim $\sim 10^7$ —10<sup>8</sup>), sparse
- Major steps in LQCD workflow require solving  $\phi_x = M_{xy}^{-1} \psi_y$



 Generate an ensemble of *lattice* gauge configurations with statistical weight

$$e^{-\tilde{S}[U]} = \det M[U]e^{-S_g[U]}$$





 Generate an ensemble of *lattice* gauge configurations with statistical weight

$$\mathrm{e}^{- ilde{S}[U]} = \det M[U]\mathrm{e}^{-S_g[U]}$$





 Generate an ensemble of *lattice* gauge configurations with statistical weight

 $e^{-\tilde{S}[U]} = \det M[U] e^{-S_g[U]}$ 

measure some operator O<sub>i</sub> on each configuration i





 Generate an ensemble of *lattice* gauge configurations with statistical weight

 $e^{-\tilde{S}[U]} = \det M[U]e^{-S_g[U]}$ 

- measure some operator O<sub>i</sub> on each configuration i
- Average of measurements is Euclidean path intergral calculation of expectation value

$$\langle \mathcal{O} \rangle = \frac{1}{N} \sum_{i}^{N} \mathcal{O}_{i} \exp \left[ -\tilde{S}_{\text{Euc}} \left\{ U_{i} \right\} \right]$$





 Generate an ensemble of *lattice* gauge configurations with statistical weight

 $e^{-\tilde{S}[U]} = \det M[U]e^{-S_g[U]}$ 

- measure some operator O<sub>i</sub> on each configuration i
- Average of measurements is Euclidean path intergral calculation of expectation value

 $\langle \mathcal{O} \rangle = \frac{1}{N} \sum_{i}^{N} \mathcal{O}_{i} \exp \left[ -\tilde{S}_{\mathrm{Euc}} \left\{ U_{i} \right\} \right]$ 

In the limits  $N \longrightarrow \infty$ ,  $L \longrightarrow \infty$ ,  $a \longrightarrow 0$  this is equivalent to the path integral:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[\overline{\psi}, \psi, A] \mathcal{O}(\overline{\psi}, \psi, A) \mathrm{e}^{-iS_{\mathrm{QCD}}[\overline{\psi}, \psi, A]}$$



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.



 $\longleftarrow \text{Message passing}$ 



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.

| QDP-JIT | QDP++ |  |  |  |  |
|---------|-------|--|--|--|--|
| QMP     |       |  |  |  |  |

#### $\leftarrow \text{Data-parallelism}$



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.

| QDP-JIT | QDP++ | QIO | ← I/C |
|---------|-------|-----|-------|
|         | QMP   |     | ]     |



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.

| QUDA    |    |     |     |
|---------|----|-----|-----|
| QDP-JIT | QD | P++ | QIO |
|         | QI | MP  |     |

 $\longleftarrow \textbf{Solvers}$ 



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.

| QUDA    |       | QPHIX |     |
|---------|-------|-------|-----|
| QDP-JIT | QDP++ |       | QIO |
|         | QI    | MP    |     |

 $\longleftarrow \textbf{Solvers}$ 



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.

| QLUA    |         |  |       |     |
|---------|---------|--|-------|-----|
| QUDA    |         |  | QPHIX | (   |
| QDP-JIT | JIT QDI |  |       | QIO |
| QMP     |         |  |       |     |



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.

| QLUA  | CPS |     |  |       |   |     |
|-------|-----|-----|--|-------|---|-----|
| QUDA  |     |     |  | QPHI) | ( |     |
| QDP-J | JIT | QDF |  |       |   | QIO |
| QMP   |     |     |  |       |   |     |



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.

| QLUA  | CPS | TMLQC | D |       |     |
|-------|-----|-------|---|-------|-----|
| QUDA  |     |       |   | QPHIX | (   |
| QDP-J | JIT | QDP+- | - |       | QIO |
| QMP   |     |       |   |       |     |



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.

| QLUA  | CPS | TMLQCD |     | Ν | /ILC        |     |
|-------|-----|--------|-----|---|-------------|-----|
| QUDA  |     |        |     |   | <b>QPHI</b> | (   |
| QDP-J | JIT | QD     | P++ |   |             | QIO |
| QMP   |     |        |     |   |             |     |



Stack of codes and libraries designed to provide common functionality, optimized for a wide range of HPC architecture.

| QLUA  | CPS | TMLQCD |     | N | 1ILC  | CHROMA |
|-------|-----|--------|-----|---|-------|--------|
| QUDA  |     |        |     |   | QPHI) | (      |
| QDP-J | JIT | QD     | P++ |   |       | QIO    |
| QMP   |     |        |     |   |       |        |



## **INSTALLED SOFTWARE**

On JUWELS, Chroma is installed with:

| MPI      | QDP     | Solver         |
|----------|---------|----------------|
| MVAPICH2 | qdp-jit | QUDA           |
| MVAPICH2 | qdpxx   | QUDA           |
| PS-MPI   | qdp-jit | QUDA           |
| PS-MPI   | qdpxx   | QUDA           |
| PS-MPI   | qdpxx   | QPHIX (AVX512) |

On JURECA, Chroma is installed with:

| MPI    | QDP   | Solver         |
|--------|-------|----------------|
| PS-MPI | qdpxx | QPHIX (AVX2)   |
| PS-MPI | qdpxx | QPHIX (AVX512) |

- Load Stages/Devel-2019a stages to test
- Request activation of features, other simulation codes, complaints  $\longrightarrow {\sf Eric}$
- or request installation scripts from Mathias, Eric



## **MODULAR SUPERCOMPUTING**

In development: QMOD library interface designed for

- LQCD task-parallelism across different architectures
- exchange of lattice data structures between separate communicators
- lattice field I/O  $\longrightarrow$  intercommunicator data exchange

Example application: group of nodes of one architecture solves quark matrix system, passes solutions (propagators) to a separate hardware group which begins assembling them into multi-nucleon correlation functions.



#### And now to Mathias...



Member of the Helmholtz Association

#### Some results and experiences



Member of the Helmholtz Association

## SOLVER STRONG SCALING COMPARISON

 $32^3\times 64$  lattices





#### **HMC THROUGH-PUT COMPARISON**





## SPECTROSCOPY EXPERIENCE

Determine hadron masses

- Use QUDA solver
- pass solutions of  $y = M^{-1}x$ , to Chroma's generic "hadron-spectroscopy" routine
- solution vectors are joined in a element-wise products "contractions" similar to scalar product

Problem:

• contractions are *Memory intensive*!!! — did not fit on 4 nodes of GPU memory

Solution:

- Compile CHROMA with QUDA, but qdpxx, rather than qdp-jit
- Contractions remain on CPU
- ${\color{black}\bullet}\sim 3\times$  as much memory on host as in the associated 4 GPUs



#### CONCLUSIONS

- Lattice QCD community software maps physics problems to hardware in an optimized yet flexible way.
- QUDA solver library makes Juwels GPU nodes ideal platform for LQCD
- Solver performance on Juwels GPU node  $\sim$  60 $\times$  faster than KNL node.
- Focus on fine-tunining placement of calculation elements on optimal hardware in an heterogeneous system.



#### CONCLUSIONS

- Lattice QCD community software maps physics problems to hardware in an optimized yet flexible way.
- QUDA solver library makes Juwels GPU nodes ideal platform for LQCD
- Solver performance on Juwels GPU node  $\sim$  60× faster than KNL node.
- Focus on fine-tunining placement of calculation elements on optimal hardware in an heterogeneous system.
- Stay healthy!

