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STEPS IN AN LQCD CALCULATION

1. Generate an ensemble of gluon field configurations “gauge generation” 
Produced in sequence, with hundreds needed per ensemble 
Strong scaling required with 100-1000 TFLOPS sustained for several months 
50-90% of the runtime is in the linear solver 
O(1) solve per linear system 
Target 164 per GPU 

2. “Analyze” the configurations 
Can be farmed out, assuming ~10 TFLOPS per job 
Task parallelism means that clusters reign supreme here 
80-99% of the runtime is in the linear solver 
Many solves per system, e.g., O(106) 
Target 244-324 per GPU

D↵�
ij (x, y;U) �

j (y) = ⌘↵i (x)

or Ax = b

Simulation Cost ~ a-6 V5/4
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MAPPING THE DIRAC OPERATOR TO CUDA

• Finite difference operator in LQCD is known as Dslash 
• Assign a single space-time point to each thread 

V = XYZT threads, e.g., V = 244 => 3.3x106 threads 

• Looping over direction each thread must 
– Load the neighboring spinor (24 numbers x8) 

– Load the color matrix connecting the sites (18 numbers x8) 

– Do the computation 

– Save the result (24 numbers)  

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity 
•

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x0 =
x x
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QUDA
• Effort started at Boston University in 2008, now in wide use as the GPU backend 

for BQCD, Chroma, CPS, MILC, TIFR, tmLQCD, etc. 
• Provides: 

— Various solvers for all major fermionic discretizations, with multi-GPU support 
— Additional performance-critical routines needed for gauge-field generation 

• Maximize performance 
– Exploit physical symmetries to minimize memory traffic 
– Mixed-precision methods 
– Autotuning for high performance on all CUDA-capable architectures 
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR) 
– Multigrid solvers for optimal convergence Multi-source solvers 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Strong-scaling improvements 

• A research tool for how to reach the exascale
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QUDA - LATTICE QCD ON GPUS
http://lattice.github.com/quda, BSD license

http://lattice.github.com/quda


6

QUDA CONTRIBUTORS

§ Ron Babich (NVIDIA) 
§ Simone Bacchio (Cyprus) 
§ Michael Baldhauf (Regensburg) 
§ Kip Barros (LANL) 
§ Rich Brower (Boston University) 
§ Nuno Cardoso (NCSA) 
§ Kate Clark (NVIDIA) 
§ Michael Cheng (Boston University) 
§ Carleton DeTar (Utah University) 
§ Justin Foley (Utah -> NIH) 
§ Joel Giedt (Rensselaer Polytechnic Institute) 
§ Arjun Gambhir (William and Mary) 
§ Steve Gottlieb (Indiana University) 
§ Kyriakos Hadjiyiannakou (Cyprus) 

§ Dean Howarth (LLNL) 
§ Bálint Joó (Jlab) 
§ Hyung-Jin Kim (BNL -> Samsung) 
§ Bartek Kostrzewa (Bonn) 
§ Claudio Rebbi (Boston University) 
§ Hauke Sandmeyer (Bielefeld) 
§ Guochun Shi (NCSA -> Google) 
§ Mario Schröck (INFN) 
§ Alexei Strelchenko (FNAL) 
§ Jiqun Tu (Columbia -> NVIDIA) 
§ Alejandro Vaquero (Utah University)  
§ Mathias Wagner (NVIDIA) 
§ Evan Weinberg (NVIDIA) 
§ Frank Winter (Jlab)

10+ years - lots of contributors
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AUTOTUNING
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RECOMPILE AND RUN
Autotuning provides performance portability
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QUDA’S AUTOTUNER

virtual C++ class “Tunable” that is derived for each kernel you want to autotune 

By default Tunable classes will autotune 1-d block size, shared memory size, grid size 

Derived specializations do 2-d and 3-d block size tuning 

Tuned parameters are stored in a std::map and dumped to disk for later reuse 

Built in performance metrics and profiling 

User just needs to 

State resource requirements: shared memory per thread and/or per block, total number of threads 

Specify a tuneKey which gives each kernel a unique entry and break any degeneracy 

ensuring optimal kernel performance
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GENERATIONAL COMPARISON
Fµν kernel - batched 3x3 multiplication
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MIXED PRECISION 
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LINEAR SOLVERS

QUDA supports a wide range of linear solvers 

CG, BiCGstab, GCR, Multi-shift solvers, etc. 

Condition number inversely proportional to mass 

Light (realistic) masses are highly singular 

Naive Krylov solvers suffer from critical slowing down at decreasing mass 

Entire solver algorithm must run on GPUs 
Time-critical kernel is the stencil application 
Also require BLAS level-1 type operations

while (|rk|> ε) { 
•βk = (rk,rk)/(rk-1,rk-1) 
•pk+1 = rk - βkpk 

     qk+1 = A pk+1 
•α = (rk,rk)/(pk+1, qk+1) 
•rk+1 = rk - αqk+1 
•xk+1 = xk + αpk+1 

•k = k+1 
} conjugate gradient
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MIXED-PRECISION CG
Apply Dslash in sloppy precision 
(single, half) 

Reliable residual replacement in high 
precision 

Ensures accuracy of final result 

Half-precision storage: 

• Stencil elements ∈ [-1,1] (Link): 

• 16-bit fixed point 

• Grid elements (Spinor): 

• 16-bit fixed point (24 numbers) 

• float (exponent, 1 number) 

Use fp32 for actual arithmetics
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MIXED-PRECISION CG
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• When true residual is injected,  
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• Use Polak-Ribière formula  
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• Residual replacement strategy of 

van der Worst and Ye 
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MIXED-PRECISION CG
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MIXED-PRECISION CG
double-half 
• Maintain solution vectors in  

high precision 
• Including the partial 

accumulator 

• When true residual is injected,  
re-project the direction vector 

• Use Polak-Ribière formula  

double-half alt 
• Residual replacement strategy of 

van der Worst and Ye 
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MIXED-PRECISION CG
mixed precision: 

apply Dslash in sloppy 
precision (single, half) 

reliable residual replacement 
in high precision 

ensures double-precision 
accuracy of final result 

virtually identical iteration 
count

do
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EIGENSOLVERS

Multiple workflows require repeated solution with different RHS with the same matrix 

Multigrid not amenable to all linear operators 

Eigenvector deflation is a robust alternative applicable to all operators 
Deflate out low modes from linear operator to accelerate the solver 
Cost of eigensolver is amortized if we solve enough RHS 
Aside: also use deflation to accelerate multigrid 

 
Memory overheads can be limiting factor 

May require storage of 1000s of vectors, ideally in fast memory
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MIXED-PRECISION DEFLATION
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DEFLATION STABILIZES LOW PRECISION
So

lv
er

 It
er

at
io

ns

0

4000

8000

12000

16000

Number of eigenvectors

0 16 32 64 128 256 512 1024

double-single-single

V=483x12, HISQ operator, physical light quarks, tol 10-10

Out of memory

Tri-precision solver 
Outer - Inner -Eigenvector



19

DEFLATION STABILIZES LOW PRECISION
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DEFLATION STABILIZES LOW PRECISION
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DEFLATION STABILIZES LOW PRECISION
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MIXED-PRECISION DEFLATION
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SCALING 
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STRONG SCALING

Multiple meanings 
Same problem size, more nodes, more GPUs 
Same problem, next generation GPUs 
Multigrid - strong scaling within the same run (not discussed here) 

To tame strong scaling we have to understand the limiters 
Bandwidth limiters 
Latency limiters
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MULTI-GPU BUILDING BLOCKS

Halo packing Kernel 

Interior Kernel 

Halo communication 

Halo update Kernel

Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

Halo packing Kernel 

Interior Kernel 

Halo communication 

Halo update Kernel
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BENCHMARKING TESTBED

DGX-1 nodes 
8x V100 GPUs connected through NVLink 
4x EDR for inter-node communication 
Optimal placement of GPUs and NIC 

Balanced GPU / IB configuration 

NVIDIA Prometheus Cluster

NVIDIA DGX-1 With Tesla V100 System Architecture  WP-08437-002_v01 | 9

V100
GPU7

V100
GPU4

V100
GPU6

V100
GPU5

CPU1NIC NIC

PCIe Switches

V100
GPU0

V100
GPU3

V100
GPU1

V100
GPU2

CPU0NIC NIC

PCIe Switches

NVLink PCIe QPI

&ŝŐƵƌĞ�ϰ �'yͲϭ�ƵƐĞƐ�ĂŶ�ϴͲ'Wh�ŚǇďƌŝĚ�ĐƵďĞͲŵĞƐŚ�ŝŶƚĞƌĐŽŶŶĞĐƚŝŽŶ�ŶĞƚǁŽƌŬ�ƚŽƉŽůŽŐǇ͘� 
dŚĞ�ĐŽƌŶĞƌƐ�ŽĨ�ƚŚĞ�ŵĞƐŚͲĐŽŶŶĞĐƚĞĚ�ĨĂĐĞƐ�ŽĨ�ƚŚĞ�ĐƵďĞ�ĂƌĞ�ĐŽŶŶĞĐƚĞĚ�ƚŽ�ƚŚĞ�W�/Ğ�ƚƌĞĞ�ŶĞƚǁŽƌŬ͕�ǁŚŝĐŚ�
ĂůƐŽ�ĐŽŶŶĞĐƚƐ�ƚŽ�ƚŚĞ��WhƐ�ĂŶĚ�E/�Ɛ͘

understand limiters 
on a single node first
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MULTI-GPU PROFILE
overlapping comms and compute
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REDUCING LOCAL PROBLEM SIZE
single GPU performance
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REDUCING LOCAL PROBLEM SIZE
single GPU performance
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STRONG SCALING PROFILE
overlapping comms and compute

P2P copies

Interior kernel

Packing kernel Halo kernels 
        (fused)

164  local volume, 
half precision
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STRONG SCALING PROFILE
Latencies ate my scaling

P2P copies

Interior kernel

Packing kernel Halo kernels 
        (fused)

API 
Calls

164  local volume, 
half precision
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REDUCING API OVERHEADS
Packing kernel writes to remote GPU using CUDA IPC

Interior kernel

Packing kernel Fused Halo

Interior kernelPacking kernel Fused Halo

SyncSync

164  local volume, 
half precision
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NVSHMEM

NVSHMEM features 
Symmetric memory allocations in device memory 
Communication API calls on CPU (standard and stream-ordered) 
Kernel-side communication (API and LD/ST) between GPUs 

NVLink and PCIe support (intranode) 
InfiniBand support (internode) 
Interoperability with MPI and OpenSHMEM libraries

Implementation of OpenSHMEM1, a Partitioned Global Address Space (PGAS) library

1 SHMEM from Cray’s “shared memory” library, https://en.wikipedia.org/wiki/SHMEM

currently in early-access
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DSLASH NVSHMEM IMPLEMENTATION

Keep general structure of packing, interior and exterior Dslash 

Use nvshmem_ptr for intra-node remote writes (fine-grained) 
 Packing buffer is located on remote device 
Use nvshmem_putmem_nbi to write to remote GPU over IB (1 RDMA transfer) 

Need to make sure writes are visible: nvshmem_barrier_all_on_stream 
or  barrier kernel that only waits for writes from neighbors 

First exploration
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NVSHMEM DSLASH
first exploration

Packing kernel Fused HaloInterior kernel Barrier kernel

164  local volume, 
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NVSHMEM + FUSING KERNELS
no extra packing and barrier kernels needed

Barrier + Fused HaloInterior + Pack + Flag kernel

164  local volume, 
half precision
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ÜBER KERNEL
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LATENCY REDUCTIONS
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MULTI-NODE STRONG SCALING
DGX SuperPOD (DGX2 nodes: 16xV100 (32GB), 8xEDR IB)
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MULTI-NODE STRONG SCALING
DGX SuperPOD (DGX2 nodes: 16xV100 (32GB), 8xEDR IB)

0

100,000

200,000

300,000

400,000

16 32 64 128 256 512 1024

MPI  NVSHMEM

G
Fl

op
/s

#GPUs

Wilson Dslash, 643x128 global volume, half precision

sweet spot for simulations

1.4x

1.4x

1.3x

164  local volume, 
half precision



40

APPLICATION SCALING 
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MILC NERSC BENCHMARK OVERVIEW

• MILC NERSC Benchmark comes in 4 lattice sizes  
• small 183x36, medium 363x72, large 723x144, x-large 1443x288 

• Benchmark runs the RHMC algorithm 
• Dominated by the multi-shift CG sparse linear solver (stencil operator) 

• Also have auxiliary “Force” and “Link” computations 

• Since 2012 MILC has built-in QUDA support 
• Enabled through a Makefile option 

• All time-critical functions off loaded to QUDA
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MILC HMC SCALING ON DGX-2

Running with MPI 

other part scales reasonably 
(not limited by communication) 

solver part needs improvements

NERSC MEDIUM BENCHMARK 363x72

0

400

800

1,200

1,600

2,000

4 8 16 32 48

other solver

ti
m

e 
[s

]

#GPUs



43

MILC SOLVER SCALING ON DGX-2

multi-shift solver 

mixed precision: double-single 
refinement: double-half 

MPI version overlaps BLAS + comms 

NVSHMEM scales beyond 32 GPUs 
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MULTIPLICATIVE 
SPEEDUP
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CHROMA HMC MULTIGRID

HMC typically dominated by solving the Dirac equation, but 
Few solves per linear system 
Can be bound by heavy solves (c.f. Hasenbusch mass preconditioning) 

Multigrid setup must run at speed of light 
Reuse and evolve multigrid setup where possible 
Use the same null space for all masses (setup run on lightest mass) 
Evolve null space vectors as the gauge field evolves (Lüscher 2007) 
Update null space when the preconditioner degrades too much on lightest mass
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CHROMA HMC-MG ON SUMMIT

Titan (1024x K20)

Summit (128x V100)

Titan (512x K20X)

Summit (128x V100, Nov 2019)

Summit (128x V100, March 2019)
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From Titan running 2016 code to Summit running 2019 code we see >82x 
speedup in HMC throughput 
Multiplicative speedup coming from machine and algorithm innovation 
Highly optimized multigrid for gauge field evolution

4.1x faster on 2x fewer GPUs 
~8x gain

10.2x faster on 8x fewer GPUs 
~82x gain
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NODE PERFORMANCE OVER TIME
Multiplicative speedup through software and hardware
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SUMMARIZING 
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QUDA ROADMAP

Multi-rhs block solvers for all stencils 
Contraction framework 
Improved strong scaling through NVSHMEM 
Beyond just regular QCD 

Longer term: Investigate how well QUDA runs on C++17 pSTL 

Post feature requests here: https://github.com/lattice/quda/issues

On to QUDA 2.0

https://github.com/lattice/quda/issues
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MULTIPLE RIGHT-HAND SIDES
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QUDA - LATTICE QCD ON GPUS

State of the art solvers using mixed precision 

Multigrid 
Deflation 
Block-Krylov solver 

All components for gauge field evolution 

Portable high-performance kernels through auto-tuning and careful optimization 
Tuned Multi-GPU scaling 

GPU centric communication with NVSHMEM takes CPU limitations out 

Multiplicative speedup from hardware and software: more science

Widely used for Lattice QCD applications on GPUs




