
Member of the Helmholtz Association

Hydrologic modeling on GPUs with ParFlow — Leveraging
accelerator architectures with modern techniques
2020-06-02 I J. Hokkanen1, J. Kraus2, A. Herten3, D. Pleiter3, S. Kollet1 I 1FZJ/IBG-3, 2NVIDIA GmbH, 3FZJ/JSC

Member of the Helmholtz Association Slide 2

❖ ParFlow is a numerical model
that simulates variably
saturated groundwater and
surface water flow

https://github.com/hydroframe/ParFlow_Short_Course/blob/master/Slides/1.parflow_intro.pdf

What is ParFlow?

Member of the Helmholtz Association Slide 3

What is ParFlow?

❖ Has been coupled to various land surface and atmospheric models

❖ Used for water cycle research, forecasting, data assimilation frameworks,
hindcasting tools, and climate change projections

❖ More than 90 publications describing its development and
application to diverse systems around the world

❖ A long development history dating back to the
1990s

https://github.com/hydroframe/ParFlow_Short_Course/blob/master/Slides/1.parflow_intro.pdf

Member of the Helmholtz Association Slide 4

Numerical model
❖ Cell centered finite difference (FD) scheme

❖ Implicit time integration

❖ Newton-Krylov methods for nonlinear problems

➢ GMRES linear solver (Kinsol) with
multigrid preconditioning (ParFlow, Hypre)

❖ Good parallel efficiency for up to 105 processes

❖ A large number of numerical kernels, none of which clearly dominate the run time

❖ Around 150k lines of C (https://github.com/parflow)

https://github.com/hydroframe/ParFlow_Advanced_ShortCourse/blob/master/S
lides/1.Intro_Overview.pdf

Member of the Helmholtz Association Slide 5

Considerations for accelerator utilization

❖ Architecture-specific ports are untenable

➢ Single-source application is preferred

❖ Separation of concerns: Scientific development vs. accelerator utilization

➢ Scientific code should ideally remain unchanged and be separated from the
architecture-specific code

❖ No single programming model has emerged as a clear winner for accommodating
new accelerator architectures (cf. message passing and MPI)

➢ Betting big on a single programming model or library is risky!

Member of the Helmholtz Association Slide 6

ParFlow: Macro-based abstraction layer

❖ Macro-based abstraction layer forms a part of ParFlow embedded Domain-Specific
Language (based on C host language)

❖ Hardly any changes to the scientific code and loop interface are required

➢ Accelerator utilization is handled separately in ParFlow eDSL

❖ Adding support for one or more accelerator programming models or libraries is
possible with a relatively small development effort

➢ The whole application is not built “around” a single accelerator programming
model or library!

➢ High developer productivity and minimal invasivity!

Member of the Helmholtz Association Slide 7

ParFlow eDSL interface
Allocations & initializations

Accessor macros

Message passing

Loop macros

KW = NewVectorType(grid2d, 1, 1,

 vector_cell_centered);

InitVector(KW, 0.0);

BCStructPatchLoop(i, j, k, fdir, ival, bc_struct,

 ipatch, is,

{

 int ip = SubvectorEltIndex(p_sub, i, j, k);

 double value = bc_patch_values[ival];

 pp[ip + fdir[0] * 1 + fdir[1] * sy_v + fdir[2] * sz_v]

 = value;

});

ix = SubgridIX(subgrid);

iy = SubgridIY(subgrid);

iz = SubgridIZ(subgrid);

 vector_update_handle = InitVectorUpdate(

 pressure, VectorUpdateAll);

 FinalizeVectorUpdate(vector_update_handle);

Member of the Helmholtz Association Slide 8

GPU-support for ParFlow eDSL

❖ The GPU-support is based on NVIDIA CUDA parallel computing platform

❖ Some of the most recent CUDA-related developments are leveraged such as

➢ Unified Memory

➢ Host-device lambdas

➢ CUDA-based libraries such as CUB and RMM

❖ CUDA-aware MPI library and GPU-based application-side data packing routines are
used for fast GPU-GPU communication

Member of the Helmholtz Association Slide 9

Development steps

1. CMAKE: Configuring CMake for optional CUDA usage

2. GPU affinity: Selecting the correct GPU device for each process

3. Memory management: Recognizing which data is needed by the GPU(s) and
modifying the memory allocations

4. Loops: Recognizing and parallelizing the correct loops for the GPU(s)

5. MPI: Solving MPI-CUDA compatibility problems

6. Profiling and optimization: Detecting page-faults, optimizing GPU-GPU data
transfers, coalescing memory accesses, optimizing kernels, etc

Member of the Helmholtz Association Slide 10

CMake tasks for the GPU version

❖ Compiling ParFlow with GPU acceleration is optional and is activated by specifying
-DPARFLOW_ACCELERATOR_BACKEND=cuda option to CMake

❖ CMake finds CUDA installation, sets CUDA paths, compiler arguments, host
compiler, etc

❖ CMake finds CUB and RMM installations and sets library paths

❖ CMake determines which C source files use CUDA eDSL headers and must be
compiled by the CUDA compiler

Member of the Helmholtz Association Slide 11

GPU affinity

❖ Each process uses only one GPU

❖ When more than one process per node is started, the employed GPU for each
process is selected by

where amps_node_rank and num_devices are the node-local rank of the
process and the node-local number of GPUs, respectively

❖ The optimum strategy when running simulations is to start the same number of
processes per node as there are GPUs

cudaSetDevice(amps_node_rank % num_devices)

Member of the Helmholtz Association Slide 12

Memory management — General

❖ In ParFlow, mallocs and frees are accessed through the eDSL API

❖ The allocation and deallocation for a memory region is (almost) always done in the
same compilation unit

❖ Unified Memory allocations/deallocations (and loops) are controlled for each
compilation unit separately allowing incremental development and flexibility

/* PFCUDA_COMP_UNIT_TYPE determines the compilation unit type:

 1: NVCC compiler, Unified Memory allocation, Parallel loops (GPUs)

 2: NVCC compiler, Unified Memory allocation, Sequential loops (CPUs)

 default: NVCC compiler, Standard heap allocation, Sequential loops (CPUs) */

#define PFCUDA_COMP_UNIT_TYPE 1

Member of the Helmholtz Association Slide 13

Memory management — eDSL (CPU memory only)

vector = talloc(Vector, 1);

tfree(vector); #define tfree(ptr) free(ptr)

#define talloc(type, count) \

 (type*)malloc(sizeof(type) \

 * (unsigned int)(count))

Source file eDSL header file

Member of the Helmholtz Association Slide 14

Memory management — Unified Memory

#define talloc(type, count) \

 (type*)malloc(sizeof(type) \

 * (unsigned int)(count))

#define talloc(type, count) \

 (type*)talloc_cuda(sizeof(type) \

 * (unsigned int)(count))

static inline void *talloc_cuda(size_t size)

{

 void *ptr = NULL;

// cudaMallocManaged(&ptr, size);

 rmmAlloc(&ptr, size, 0, __FILE__, __LINE__);

 return ptr;

}

CPU version eDSL header file GPU version eDSL header file

Member of the Helmholtz Association Slide 15

Memory management — Unified Memory

#define tfree(ptr) free(ptr) #define tfree(ptr) tfree_cuda(ptr)

static inline void tfree_cuda(void *ptr)

{

// cudaFree(&ptr);

 rmmFree(ptr, 0, __FILE__, __LINE__);

}

CPU version eDSL header file GPU version eDSL header file

Member of the Helmholtz Association Slide 16

Memory management — RMM pool allocator

❖ In CUDA C++, Unified Memory is allocated by calling cudaMallocManaged()

Then why bother adding more
dependencies and use rmmAlloc to
allocate Unified Memory instead of just
directly calling cudaMallocManaged as
RMM calls cudaMallocManaged
internally anyway?

Member of the Helmholtz Association Slide 17

The RMM tradeoff:

❖ Slightly increases the
average GPU memory
usage in ParFlow (around
3-5%)

❖ Does not really increase
the peak GPU memory
usage in ParFlow

Memory management — RMM pool allocator

Member of the Helmholtz Association Slide 18

Loops — General

❖ In ParFlow, the loops over the grid cells are accessed through the eDSL API

❖ The eDSL defines general loops which take the loop body (which may be hundreds
of lines of code) as a preprocessor macro argument

❖ Hundreds of loops with often very different loop body use the same looping macros

❖ The GPU implementation relies on modified loop macros which leverage host-device
lambdas and general GPU kernels

❖ The loop body and required kernel arguments are passed as a lambda function for
the general GPU kernels

Member of the Helmholtz Association Slide 19

Loops: An example of a specialized GPU kernel

BoxLoopI0(i, j, k, ix, iy, iz, nx, ny, nz,

{

 int ip;

 ip = SubvectorEltIndex(f_sub, i, j, k);

 fp[ip] = pp[ip] - value;

});

#ifdef HAVE_CUDA

/* some code to find grid & block sizes */

PlusEqualsKernel<<<grid, block>>>

 (yp, alpha, ix, iy, iz, nx, ny, nz);

#else

BoxLoopI0(i, j, k, ix, iy, iz, nx, ny, nz,

{

 int ip;

 ip = SubvectorEltIndex(f_sub, i, j, k);

 fp[ip] = pp[ip] - value;

});

#endif

Original source file What could be done, but...

Member of the Helmholtz Association Slide 20

Loops: General GPU kernels

/* … using CPU macros … */

BoxLoopI0(i, j, k, ix, iy, iz, nx, ny, nz,

{

 int ip;

 ip = SubvectorEltIndex(f_sub, i, j, k);

 fp[ip] = pp[ip] - value;

});

Original source file New source file

/* … using GPU macros … */

BoxLoopI0(i, j, k, ix, iy, iz, nx, ny, nz,

{

 int ip;

 ip = SubvectorEltIndex(f_sub, i, j, k);

 fp[ip] = pp[ip] - value;

});

Member of the Helmholtz Association Slide 21

Loops: General GPU kernels
CPU version eDSL header file GPU version eDSL header file

#define BoxLoopI0(i, j, k, \

 ix, iy, iz, nx, ny, nz, loop_body) \

{ \

 for (k = iz; k < iz + nz; k++) \

 for (j = iy; j < iy + ny; j++) \

 for (i = ix; i < ix + nx; i++) \

 { \

 loop_body; \

 } \

}

#define BoxLoopI0(i, j, k, \

 ix, iy, iz, nx, ny, nz, loop_body) \

{ \

 /* some code to find grid & block sizes */\

 auto lambda_body = [=] __host__ __device__\

 (const int i, const int j, const int k) \

 loop_body; \

 \

 BoxKernelI0<<<grid, block>>>(lambda_body, \

 ix, iy, iz, nx, ny, nz); \

}

Member of the Helmholtz Association Slide 22

Loops: General GPU kernels
template <typename LambdaBody>

__global__ static void BoxKernelI0(LambdaBody loop_body, const int ix, const int iy,

 const int iz, const int nx, const int ny, const int nz)

{

 int i = ((blockIdx.x * blockDim.x) + threadIdx.x);

 int j = ((blockIdx.y * blockDim.y) + threadIdx.y);

 int k = ((blockIdx.z * blockDim.z) + threadIdx.z);

 if(i >= nx || j >= ny || k >= nz) return;

 i += ix;

 j += iy;

 k += iz;

 loop_body(i, j, k);

}

Member of the Helmholtz Association Slide 23

MPI troubles

❖ Original ParFlow used derived MPI datatypes and relied on MPI library-side data
packing and unpacking

❖ Problem: In the ParFlow GPU version, the pointers that were originally passed to the
MPI library pointed to Unified Memory allocations

➢ Frequent segfaults with MVAPICH2-GDR and ParastationMPI (not CUDA-aware)

➢ ParastationMPI-CUDA released in 10/2019 worked, but GPU-GPU data transfers
were extremely slow (GPUDirect P2P/RDMA not used)

❖ Solution: New application-side GPU-based data packing routines with pinned GPU
staging buffers and a simple MPI_BYTE data type for MPI communication (GPUDirect
P2P/RDMA now works with MVAPICH2-GDR and ParastationMPI-CUDA)

Member of the Helmholtz Association Slide 24

Profiling & Optimization

❖ Used profiling tools:
➢ Nvidia Visual Profiler
➢ Nvidia Nsight Systems + Compute

❖ Observed importance (ordered):
1. Minimizing recurring page faults and host-device data transfer (large impact)
2. Adding efficient parallel reduction kernels (large impact)
3. Using pool allocator for Unified Memory (large impact)
4. Coalescing device memory accesses (large impact)
5. Avoiding unnecessary synchronizations (small impact)
6. Tweaking with grid & block sizes (small impact)

Member of the Helmholtz Association Slide 25

Profiling & Optimization: Nsight Systems

Member of the Helmholtz Association Slide 26

Profiling & Optimization: Nsight Systems

Member of the Helmholtz Association Slide 27

Results (JUWELS supercomputer)

Member of the Helmholtz Association Slide 28

Summary of the utilized approach

❖ Requires at least a minimal abstraction layer for accessing the most relevant loops
and memory allocations/deallocations

❖ The same interface for loops, memory allocations, and data structure access
patterns is used regardless of the used architecture

❖ All compute kernels and device functions are naturally defined in the same
compilation unit such that the compiler can fully optimize the machine code

❖ The codebase maintainability is well preserved

❖ Significant savings with future developments to support new architectures are
possible

Member of the Helmholtz Association Slide 29

Questions & Discussion

