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❖ ParFlow is a numerical model 
that simulates variably 
saturated groundwater and 
surface water flow

https://github.com/hydroframe/ParFlow_Short_Course/blob/master/Slides/1.parflow_intro.pdf

What is ParFlow?
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What is ParFlow?

❖ Has been coupled to various land surface and atmospheric models

❖ Used for water cycle research, forecasting, data assimilation frameworks, 
hindcasting tools, and climate change projections

❖ More than 90 publications describing its development and 
application to diverse systems around the world

❖ A long development history dating back to the
1990s

https://github.com/hydroframe/ParFlow_Short_Course/blob/master/Slides/1.parflow_intro.pdf
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Numerical model
❖ Cell centered finite difference (FD) scheme

❖ Implicit time integration

❖ Newton-Krylov methods for nonlinear problems

➢ GMRES linear solver (Kinsol) with 
multigrid preconditioning (ParFlow, Hypre)

❖ Good parallel efficiency for up to 105 processes

❖ A large number of numerical kernels, none of which clearly dominate the run time

❖ Around 150k lines of C (https://github.com/parflow)

https://github.com/hydroframe/ParFlow_Advanced_ShortCourse/blob/master/S
lides/1.Intro_Overview.pdf
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Considerations for accelerator utilization

❖ Architecture-specific ports are untenable

➢ Single-source application is preferred 

❖ Separation of concerns: Scientific development vs. accelerator utilization

➢ Scientific code should ideally remain unchanged and be separated from the 
architecture-specific code

❖ No single programming model has emerged as a clear winner for accommodating 
new accelerator architectures (cf. message passing and MPI)

➢ Betting big on a single programming model or library is risky!
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ParFlow: Macro-based abstraction layer

❖ Macro-based abstraction layer forms a part of ParFlow embedded Domain-Specific 
Language (based on C host language)

❖ Hardly any changes to the scientific code and loop interface are required

➢ Accelerator utilization is handled separately in ParFlow eDSL

❖ Adding support for one or more accelerator programming models or libraries is 
possible with a relatively small development effort

➢ The whole application is not built “around” a single accelerator programming 
model or library!

➢ High developer productivity and minimal invasivity!
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ParFlow eDSL interface
Allocations & initializations

Accessor macros

Message passing

Loop macros

KW = NewVectorType(grid2d, 1, 1,    

  vector_cell_centered);

InitVector(KW, 0.0);

BCStructPatchLoop(i, j, k, fdir, ival, bc_struct,    

  ipatch, is,

{

  int ip = SubvectorEltIndex(p_sub, i, j, k);

  double value = bc_patch_values[ival];

  pp[ip + fdir[0] * 1 + fdir[1] * sy_v + fdir[2] * sz_v]

    = value;

});

ix = SubgridIX(subgrid);

iy = SubgridIY(subgrid);

iz = SubgridIZ(subgrid);

  vector_update_handle = InitVectorUpdate(

    pressure, VectorUpdateAll);

  FinalizeVectorUpdate(vector_update_handle);
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GPU-support for ParFlow eDSL

❖ The GPU-support is based on NVIDIA CUDA parallel computing platform

❖ Some of the most recent CUDA-related developments are leveraged such as

➢ Unified Memory 

➢ Host-device lambdas

➢ CUDA-based libraries such as CUB and RMM

❖ CUDA-aware MPI library and GPU-based application-side data packing routines are 
used for fast GPU-GPU communication
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Development steps

1. CMAKE: Configuring CMake for optional CUDA usage

2. GPU affinity: Selecting the correct GPU device for each process

3. Memory management: Recognizing which data is needed by the GPU(s) and 
modifying the memory allocations

4. Loops: Recognizing and parallelizing the correct loops for the GPU(s)

5. MPI: Solving MPI-CUDA compatibility problems

6. Profiling and optimization: Detecting page-faults, optimizing GPU-GPU data 
transfers, coalescing memory accesses, optimizing kernels, etc
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CMake tasks for the GPU version

❖ Compiling ParFlow with GPU acceleration is optional and is activated by specifying 
-DPARFLOW_ACCELERATOR_BACKEND=cuda option to CMake

❖ CMake finds CUDA installation, sets CUDA paths, compiler arguments, host 
compiler, etc

❖ CMake finds CUB and RMM installations and sets library paths

❖ CMake determines which C source files use CUDA eDSL headers and must be 
compiled by the CUDA compiler
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GPU affinity

❖ Each process uses only one GPU

❖ When more than one process per node is started, the employed GPU for each 
process is selected by

where amps_node_rank and num_devices are the node-local rank of the         
process and the node-local number of GPUs, respectively

❖ The optimum strategy when running simulations is to start the same number of 
processes per node as there are GPUs

cudaSetDevice(amps_node_rank % num_devices)
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Memory management — General

❖ In ParFlow, mallocs and frees are accessed through the eDSL API

❖ The allocation and deallocation for a memory region is (almost) always done in the 
same compilation unit

❖ Unified Memory allocations/deallocations (and loops) are controlled for each 
compilation unit separately allowing incremental development and flexibility

/* PFCUDA_COMP_UNIT_TYPE determines the compilation unit type:

  1: NVCC compiler, Unified Memory allocation, Parallel loops (GPUs)   

  2: NVCC compiler, Unified Memory allocation, Sequential loops (CPUs)

  default: NVCC compiler, Standard heap allocation, Sequential loops (CPUs) */

#define PFCUDA_COMP_UNIT_TYPE 1
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Memory management — eDSL (CPU memory only)

vector = talloc(Vector, 1);

tfree(vector); #define tfree(ptr) free(ptr)

#define talloc(type, count) \

  (type*)malloc(sizeof(type) \

    * (unsigned int)(count))

Source file eDSL header file
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Memory management — Unified Memory

#define talloc(type, count) \

  (type*)malloc(sizeof(type) \

    * (unsigned int)(count))

#define talloc(type, count) \

  (type*)talloc_cuda(sizeof(type) \

    * (unsigned int)(count))

static inline void *talloc_cuda(size_t size)

{

   void *ptr = NULL;

// cudaMallocManaged(&ptr, size);

   rmmAlloc(&ptr, size, 0, __FILE__, __LINE__);

   return ptr;

}

CPU version eDSL header file GPU version eDSL header file
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Memory management — Unified Memory

#define tfree(ptr) free(ptr) #define tfree(ptr) tfree_cuda(ptr)

static inline void tfree_cuda(void *ptr)

{

// cudaFree(&ptr);

   rmmFree(ptr, 0, __FILE__, __LINE__);

}

CPU version eDSL header file GPU version eDSL header file
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Memory management — RMM pool allocator

❖ In CUDA C++, Unified Memory is allocated by calling cudaMallocManaged()

Then why bother adding more 
dependencies and use rmmAlloc to 
allocate Unified Memory instead of just 
directly calling cudaMallocManaged as 
RMM calls cudaMallocManaged 
internally anyway?
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The RMM tradeoff:

❖ Slightly increases the 
average GPU memory 
usage in ParFlow (around 
3-5%)

❖ Does not really increase 
the peak GPU memory 
usage in ParFlow

Memory management — RMM pool allocator
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Loops — General

❖ In ParFlow, the loops over the grid cells are accessed through the eDSL API

❖ The eDSL defines general loops which take the loop body (which may be hundreds 
of lines of code) as a preprocessor macro argument

❖ Hundreds of loops with often very different loop body use the same looping macros

❖ The GPU implementation relies on modified loop macros which leverage host-device 
lambdas and general GPU kernels

❖ The loop body and required kernel arguments are passed as a lambda function for 
the general GPU kernels
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Loops: An example of a specialized GPU kernel

BoxLoopI0(i, j, k, ix, iy, iz, nx, ny, nz,

{

  int ip;

  ip = SubvectorEltIndex(f_sub, i, j, k);

  fp[ip] = pp[ip] - value;

});

#ifdef HAVE_CUDA

/* some code to find grid & block sizes */

PlusEqualsKernel<<<grid, block>>>

  (yp, alpha, ix, iy, iz, nx, ny, nz);

#else

BoxLoopI0(i, j, k, ix, iy, iz, nx, ny, nz,

{

  int ip;

  ip = SubvectorEltIndex(f_sub, i, j, k);

  fp[ip] = pp[ip] - value;

});

#endif

Original source file What could be done, but...
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Loops: General GPU kernels

/* … using CPU macros … */

BoxLoopI0(i, j, k, ix, iy, iz, nx, ny, nz,

{

  int ip;

  ip = SubvectorEltIndex(f_sub, i, j, k);

  fp[ip] = pp[ip] - value;

});

Original source file New source file

/* … using GPU macros … */

BoxLoopI0(i, j, k, ix, iy, iz, nx, ny, nz,

{

  int ip;

  ip = SubvectorEltIndex(f_sub, i, j, k);

  fp[ip] = pp[ip] - value;

});
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Loops: General GPU kernels
CPU version eDSL header file GPU version eDSL header file

#define BoxLoopI0(i, j, k,            \

   ix, iy, iz, nx, ny, nz, loop_body) \

{                                     \

  for (k = iz; k < iz + nz; k++)      \

    for (j = iy; j < iy + ny; j++)    \

      for (i = ix; i < ix + nx; i++)  \

      {                               \

        loop_body;                    \

      }                               \

}

#define BoxLoopI0(i, j, k,                  \

   ix, iy, iz, nx, ny, nz, loop_body)       \

{                                           \

  /* some code to find grid & block sizes */\

  auto lambda_body = [=] __host__ __device__\

    (const int i, const int j, const int k) \

      loop_body;                            \

                                            \

  BoxKernelI0<<<grid, block>>>(lambda_body, \

    ix, iy, iz, nx, ny, nz);                \

}
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Loops: General GPU kernels
template <typename LambdaBody>

__global__ static void BoxKernelI0(LambdaBody loop_body, const int ix, const int iy, 

    const int iz, const int nx, const int ny, const int nz)

{

    int i = ((blockIdx.x * blockDim.x) + threadIdx.x);

    int j = ((blockIdx.y * blockDim.y) + threadIdx.y);

    int k = ((blockIdx.z * blockDim.z) + threadIdx.z);

    if(i >= nx || j >= ny || k >= nz) return;

    i += ix;

    j += iy;

    k += iz;

    

    loop_body(i, j, k);

}
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MPI troubles

❖ Original ParFlow used derived MPI datatypes and relied on MPI library-side data 
packing and unpacking

❖ Problem: In the ParFlow GPU version, the pointers that were originally passed to the 
MPI library pointed to Unified Memory allocations

➢ Frequent segfaults with MVAPICH2-GDR and ParastationMPI (not CUDA-aware)

➢ ParastationMPI-CUDA released in 10/2019 worked, but GPU-GPU data transfers 
were extremely slow (GPUDirect P2P/RDMA not used)

❖ Solution: New application-side GPU-based data packing routines with pinned GPU 
staging buffers and a simple MPI_BYTE data type for MPI communication (GPUDirect 
P2P/RDMA now works with MVAPICH2-GDR and ParastationMPI-CUDA)
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Profiling & Optimization

❖ Used profiling tools: 
➢ Nvidia Visual Profiler 
➢ Nvidia Nsight Systems + Compute

❖ Observed importance (ordered):
1. Minimizing recurring page faults and host-device data transfer (large impact)
2. Adding efficient parallel reduction kernels (large impact)
3. Using pool allocator for Unified Memory (large impact)
4. Coalescing device memory accesses (large impact)
5. Avoiding unnecessary synchronizations (small impact)
6. Tweaking with grid & block sizes (small impact)
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Profiling & Optimization: Nsight Systems
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Profiling & Optimization: Nsight Systems
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Results (JUWELS supercomputer)
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Summary of the utilized approach

❖ Requires at least a minimal abstraction layer for accessing the most relevant loops 
and memory allocations/deallocations

❖ The same interface for loops, memory allocations, and data structure access 
patterns is used regardless of the used architecture

❖ All compute kernels and device functions are naturally defined in the same 
compilation unit such that the compiler can fully optimize the machine code

❖ The codebase maintainability is well preserved

❖ Significant savings with future developments to support new architectures are 
possible
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Questions & Discussion


