
16.06.2020 I CHRISTIAN SCHIFFER (TEAM BIG DATA ANALYTICS, INM-1, FORSCHUNGSZENTRUM JÜLICH)

JSC MSA: GPU SEMINAR

Terabyte-scale image analysis with HPC-enabled Deep Learning for
building a map of the human brain

Member of the Helmholtz Association

Member of the Helmholtz Association

• Human Brain Mapping

• Deep Learning on HPC
• Frameworks
• Distributed Deep Learning

• Deep Learning on “Big Data”

Outline

Member of the Helmholtz Association

Building a Human Brain Atlas for Cytoarchitecture

• Three-dimensional model of the human brain

• Data from multiple modalities in common space

• One aspect: Cytoarchitectonic areas

• Cytoarchitectonic mapping to delineate cortical
areas in high-resolution histological sections

JuBrain Probabilistic Atlas
http://www.jubrain.fz-juelich.de

Member of the Helmholtz Association

Histological Human Brain Sections

• Cut brain in ~7400 20µm thick sections

• Stain cell bodies and scan in light
microscope at 1µm resolution

• Delineate brain areas in every 60th section
of 10 different brains

• Average annotations in common reference
space to obtain probabilistic maps

Member of the Helmholtz Association

• Cut brain in ~7400 20µm thick sections

• Stain cell bodies and scan in light
microscope at 1µm resolution

• Delineate brain areas in every 60th section
of 10 different brains

• Average annotations in common reference
space to obtain probabilistic maps

Histological Human Brain Sections

Member of the Helmholtz Association

Histological Human Brain Sections

• Cut brain in ~7400 20µm thick sections

• Stain cell bodies and scan in light
microscope at 1µm resolution

• Delineate brain areas in every 60th section
of 10 different brains

• Average annotations in common reference
space to obtain probabilistic maps

JuBrain Probabilistic Atlas
http://www.jubrain.fz-juelich.de

Member of the Helmholtz Association

Observer Independent Method
• Distinguished by variations of cell

distribution in cortical laminae and with
respect to columnar organization

• Schleicher et al., 1999: Observer
independent method for parcellation

• Time and labor intensive, does not scale
with high throughput imaging

• Idea: Use Deep Learning to speed up and
support mapping process

A. Schleicher et al., “Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative
approach to cytoarchitectonics”, Neuroimage, vol 9, no 1, pp. 165-177, 1999

BA17BA18

I
II

III

IV
V
VI

I

II

III

IV

V
VI

Member of the Helmholtz Association

Basic principle of Deep Learning

Input Output Correct
output

Deep Neural Network

Loss function

Error between
output and correct output

Member of the Helmholtz Association

Basic principle of Deep Learning

Input Output Correct
output

Loss function

Error between
output and correct output

Deep Neural Network

Member of the Helmholtz Association

Dataset for automatic cytoarchitecture classification

16.06.2020

V2

V2 - oblique

V4lp

V2 - artifact

INM-1 brain collection
• Collection of donor brains
• Data sizes for different scanning protocols

• every 15th section: ~3.5 TB
• every section: ~50 TB
• every section w. z-scanning (30 layers): ~1.5 PB

• ~400 sections with partial brain area annotations

Challenges
• Complex and ambiguous cell patterns
• Inter-individual differences between brains
• High variability due to staining, sectioning artifacts,

changing angle between sectioning plane and brain
surface (oblique cuts)

Member of the Helmholtz Association

Technical Challenges
• Training on whole images (~10 GB) is impossible,

we train on large high-resolution image patches
• ImageNet: 224x224 pixels
• Ours: ~2000x2000 pixels (4x4 mm²)

• Dataset does not fit into memory and has to be
read demand

• Pre-processing of large images (e.g. data
augmentation) is computationally expensive

• GPU memory is limited, few patches fit on a single
GPU

16.06.2020

Member of the Helmholtz Association

HPC to the rescue!

• Data is stored close to the JSC HPC systems
→ Fast I/O

• I/O and pre-processing can be parallelized across
many CPUs
→ Fast training sample creation

• Training can be parallelized across many GPUs
→ Fast training pipeline

• Large scale experiments of hyperparameter
exploration can be parallelized across many nodes
→ Fast iterative development loop

16.06.2020

Member of the Helmholtz Association

NodeNode Node

HPC enabled training workflow

16.06.2020

GPU

CPU CPU CPU

CPU CPU

CPU CPU

CPU

CPU

GPU

CPU CPU CPU

CPU CPU

CPU CPU

CPU

CPU

GPU

CPU CPU CPU

CPU CPU

CPU CPU

CPU

CPU

GPU

CPU CPU CPU

CPU CPU

CPU CPU

CPU

CPU

image
data

(HDF5)

● Python 3
● Pytorch/TensorFlow
● mpi4py
● h5py
● OpenCV
● numpy
● SciPy

Member of the Helmholtz Association 16.06.2020

Workflow performance on JURECA and JUWELS

Member of the Helmholtz Association

Deep Learning Frameworks

• Model neural network as computation graph
• Nodes are operations (e.g. matrix multiply)
• Edges are tensors
• Enables automatic differentiation
• Static or dynamic construction

• Many operations can be efficiently executed on
GPUs, for example
• Matrix multiplication (Fully-connected layer)
• Convolution

• Focused on Deep Learning, but applicable to
many other applications

16.06.2020

Source: Understand TensorFlow by mimicking its API from scratch

https://medium.com/@d3lm/understand-tensorflow-by-mimicking-its-api-from-scratch-faa55787170d

Member of the Helmholtz Association

Common libraries used by Deep Learning Frameworks

• CUDA

• cuDNN (NVIDIA CUDA Deep Neural Network library)

• NCCL (NVIDA Collective Communication Library)

16.06.2020

Member of the Helmholtz Association

Popular Deep Learning Frameworks

Popular
• TensorFlow 1.x/2.x (Google)
• (tf.)keras (created François Chollet, now at Google)
• pytorch (Facebook)
• MxNet+GluonCV+GluonNLP+GluonTS (Apache)
• CNTK (Microsoft)

Older frameworks (but you still find code for them)
• theano (Montreal Institute for Learning Algorithms)
• Caffe (relies more heavily on C++)

16.06.2020

Member of the Helmholtz Association

TensorFlow 1.x

• Computation graph is statically defined (define-and-run)

• Graph can be automatically optimized before execution

• Shortcomings (addressed in TensorFlow 2.x)
• Hard to debug
• Heavy use of global variables and states
• Overloaded API

16.06.2020

import tensorflow as tf

Input nodes
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)

Define computation graph
add = tf.add(a, b)
mul = tf.multiply(a, b)
div = tf.divide(add, mul)

Execute graph with concrete input
with tf.Session() as sess:
 print(sess.run(div, feed_dict={a: 15,
b: 5}))

Member of the Helmholtz Association

TensorFlow 2.x

• Computation graph is dynamically defined

• Computation can be structured in functions
• Improved code structure
• Functions can be compiled for improved performance
• Compilation can be temporarily disabled for debugging

• API cleanup
• tf.keras main API for neural nets

16.06.2020

import tensorflow as tf

Dynamic computation graph
a = tf.convert_to_tensor(15)
b = tf.convert_to_tensor(5)

add = tf.add(a, b)
mul = tf.multiply(a, b)
div = tf.divide(add, mul)

Compile graph using function
@tf.function()
def compute(a, b):
 add = tf.add(a, b)
 mul = tf.multiply(a, b)
 return tf.divide(add, mul)

compute(15, 5)

Member of the Helmholtz Association

import tensorflow as tf

Get the data
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

Define the model
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])

Define loss function
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()

Compile model (set optimizer, loss function and metrics)
model.compile(optimizer='adam', loss=loss_fn,
metrics=['accuracy'])

Train the model
model.fit(x_train, y_train, epochs=5)

Apply the model
model.evaluate(x_test, y_test, verbose=2)

(tf.)keras

• API specification for building and training
neural networks

• Standalone implementation supports multiple
backends

• Part of TensorFlow 2.x as tf.keras

• Allows training models with very few lines of
code

16.06.2020

Member of the Helmholtz Association

PyTorch

• Computation graph is dynamically defined

• numpy-oriented interface (“numpy with GPUs”)

• Fine-grained control through low-level API

• Optional third-party libraries to avoid boilerplate code
(e.g. Lightning)

16.06.2020

import torch

Define variables
a = torch.from_numpy(15)
b = torch.from_numpy(5)

Move to third GPU
a = a.to("cuda:2")
b = b.to("cuda:2")

Compute (on GPU)
add = torch.add(a, b)
mult = torch.mul(a, b)
div = torch.div(add, mult)

Member of the Helmholtz Association

TensorFlow or PyTorch?
TensorFlow (+tf.keras)
• Allows quick and easy experimentation with standard processing

pipelines and models
• Many things can be accomplished in few lines of code
• Offers various ways to deploy trained models to production (e.g.

TensorFlow.js for the web or TensorFlow Lite for mobile and IoT)
• More exotic experiments can be hard to implement

PyTorch
• Development feels more “phytonic”
• Lower level API allows more fine grained control
• Non-standard experiments are often easier to implement
• Higher flexibility comes at the cost of more boilerplate code (e.g.

training loop)

16.06.2020

Member of the Helmholtz Association

Distributed Deep Learning

• Distributed Deep Learning enables training across multiple GPUs
on one node or across multiple nodes

• Reduces training time or allows training of larger models

• Data parallelism
• Each GPU gets a replica of the model
• Each GPU processes different samples
• Gradients are averaged before updating the weights

• Model parallelism (rarely used in practice)
• Split one model across multiple GPUs
• Useful for very large models which do not fit on one GPU

16.06.2020

GPU 1 GPU 2

Member of the Helmholtz Association

Data parallel training

16.06.2020

Average A
llreduce

GPUB1 gradients 1 gradients 1-8

GPUB2 gradients 2 gradients 1-8

GPUB3 gradients 3 gradients 1-8

GPUB4 gradients 4 gradients 1-8

GPUB5 gradients 5 gradients 1-8

GPUB6 gradients 6 gradients 1-8

GPUB7 gradients 7 gradients 1-8

GPUB8 gradients 8 gradients 1-8

• Well supported in all frameworks

• Most common variant: Synchronized
Gradient Descent

• Gradient averaging can be efficiently
implemented, eg. with MPI or NCCL

Member of the Helmholtz Association

Distributed training in TensorFlow with Horovod

16.06.2020

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

Define the model
model = tf.keras.Sequential([
 tf.keras.layers.Conv2D(32, [3, 3], activation='relu'),
 ...
 tf.keras.layers.Dropout(0.5),
 tf.keras.layers.Dense(10, activation='softmax')
])

opt = tf.optimizers.Adam(learning_rate=0.1)

model.compile(loss=tf.losses.SparseCategoricalCrossentropy(),
 optimizer=opt,
 metrics=['accuracy'],
 experimental_run_tf_function =False)

model.fit(x_train, y_train, epochs=5)

import tensorflow as tf
import horovod.tensorflow.keras as hvd

Initialize Horovod
hvd.init()
Assign GPU to this process
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

Define the model
model = ...

opt = tf.optimizers.Adam(learning_rate=0.1)
Make optimizer distributed
opt = hvd.DistributedOptimizer(opt)

model.compile(loss=tf.losses.SparseCategoricalCrossentropy(),
 optimizer=opt,
 metrics=['accuracy'],
 experimental_run_tf_function =False)

Make sure all models start with the same weights
callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback(0),]
model.fit(x_train, y_train, epochs=5, callbacks=callbacks)

Assign GPU

Modify optimizer

Init weights

Note: Horovod also supports PyTorch and MXNet

Member of the Helmholtz Association

from torch import nn
from torchvision.models import resnet50
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

Initialize distributed environment
rank = ... # e.g. by mpi4py
size = ...
dist.init_process_group("nccl", "tcp://127.0.0.1:12345", rank, size)

data = ...

Create a model
model = resnet50()
Model wrapper takes care of averaging gradients
model = DistributedDataParallel(model, device_ids=[rank,])
Move model to correct GPU
mode = model.to(rank)

Create optimizer
opt = optim.SGD(model.parameters(), lr=0.1)
loss_fn = nn.MSELoss().to(rank)

Training loop
for x, y in data:
 opt.zero_grad()
 y_ = model(x)
 loss = loss_fn(y, y_)
 loss.backward()
 opt.step()

Distributed training in PyTorch

16.06.2020

Init

Modify model

from torch import nn
from torchvision.models import resnet50
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

data = ...

Create a model
model = resnet50()
Move model to first GPU
mode = model.cuda()

Create optimizer
opt = optim.SGD(model.parameters(), lr=0.1)
loss_fn = nn.MSELoss().cuda()

Training loop
for x, y in data:
 opt.zero_grad()
 y_ = model(x)
 loss = loss_fn(y, y_)
 loss.backward()
 opt.step()

Member of the Helmholtz Association

Deep Learning on “Big Data”

16.06.2020

• Most Deep Learning applications rely on large datasets, but
individual samples are mostly not very large
• Example: ImageNet contains millions of images, but each

image is not extremely large (e.g. 224x224 pixels)

• Some applications have to handle large datasets and large
sample size, for example
• medical imaging (2D and 3D data)
• remote sensing
• astronomy
• …

• GPU memory often becomes the limiting factor when training
deep models for such applications

Member of the Helmholtz Association

Trade speed for memory by gradient checkpointing

16.06.2020

• Intermediate layer outputs are usually kept in memory,
as they are needed for gradient computation (chain rule
of calculus)

• Hidden representations of large high-dimensional data
(e.g. images or 3D volumes) can take massive amounts
of space

• Idea: Trade speed for memory by discarding
intermediate outputs and recompute them on demand
during gradient computation Source: Make huge neural nets fit in memory

https://github.com/cybertronai/gradient-checkpointing

Member of the Helmholtz Association

Trade speed for memory by gradient checkpointing

16.06.2020

• Intermediate layer outputs are usually kept in memory,
as they are needed for gradient computation (chain rule
of calculus)

• Hidden representations of large high-dimensional data
(e.g. images or 3D volumes) can take massive amounts
of space

• Idea: Trade speed for memory by discarding some
intermediate outputs and recompute them on demand
during gradient computation Source: Make huge neural nets fit in memory

https://github.com/cybertronai/gradient-checkpointing

Member of the Helmholtz Association

Gradient checkpointing in PyTorch

16.06.2020

from torch import nn

class Model(nn.Module):
 def __init__(self):
 super().__init__()
 self.conv1 = nn.Conv2d(1, 16, kernel_size=3)
 self.conv2 = nn.Conv2d(16, 32, kernel_size=3)
 self.conv3 = nn.Conv2d(32, 64, kernel_size=3)
 self.conv4 = nn.Conv2d(64, 128,
kernel_size=3)

 def forward(self, x):
 x = self.conv1(x)
 x = self.conv2(x)
 x = self.conv3(x)
 x = self.conv4(x)

 return x

from torch import nn
import torch.utils.checkpoint as cp

class Model(nn.Module):
 def __init__(self):
 super().__init__()
 self.conv1 = nn.Conv2d(1, 16, kernel_size=3)
 self.conv2 = nn.Conv2d(16, 32, kernel_size=3)
 self.conv3 = nn.Conv2d(32, 64, kernel_size=3)
 self.conv4 = nn.Conv2d(64, 128,
kernel_size=3)

 def _make_cp_fun(self):
 def _cp_fun(x):
 x = self.conv1(x)
 x = self.conv2(x)
 return x
 return _cp_fun

 def forward(self, x):
 x = cp.checkpoint(self._make_cp_fun(), x)
 x = self.conv3(x)
 x = self.conv4(x)

 return x

Member of the Helmholtz Association

Mixed Precision Training

16.06.2020

• Deep Learning typically uses float32 (single precision) for
parameters and layer outputs

• Using float16 (half precision) speeds up computation and
halves memory requirements

• Mixed precision training
• Use float16 for gradients and layer outputs
• Keep parameters in float32
• Internally scale loss and gradients to prevent underflow

• TensorCores in modern NVIDIA GPUs (Volta, Turing, Ampere)
specifically speed up half precision operations

Member of the Helmholtz Association

Mixed Precision Training in PyTorch (1.6-nightly build)

16.06.2020

from torch.cuda import amp

Creates model and optimizer in default precision
model = ...
optimizer = ...
data = ...

Creates a GradScaler once at the beginning of training.
scaler = amp.GradScaler()

for input, target in data:
 optimizer.zero_grad()

 # Runs the forward pass with autocasting.
 with amp.autocast():
 output = model(input)
 loss = loss_fn(output, target)

 # Scales loss. Calls backward() on scaled loss to create scaled gradients.
 scaler.scale(loss).backward()

 # scaler.step() first unscales the gradients of the optimizer's assigned params.
 scaler.step(optimizer)

 # Updates the scale for next iteration.
 scaler.update()

Member of the Helmholtz Association 16.06.2020

Christian Schiffer
Email: c.schiffer@fz-juelich.de

Phone: +49 2461 61-3486

Team Big Data Analytics
Institute of Neuroscience and Medicine (INM-1)

mailto:c.schiffer@fz-juelich.de

