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Terabyte-scale image analysis with HPC-enabled Deep Learning for 
building a map of the human brain
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• Human Brain Mapping

• Deep Learning on HPC
• Frameworks
• Distributed Deep Learning

• Deep Learning on “Big Data”

Outline
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Building a Human Brain Atlas for Cytoarchitecture

• Three-dimensional model of the human brain

• Data from multiple modalities in common space

• One aspect: Cytoarchitectonic areas

• Cytoarchitectonic mapping to delineate cortical 
areas in high-resolution histological sections

JuBrain Probabilistic Atlas
http://www.jubrain.fz-juelich.de
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Histological Human Brain Sections

• Cut brain in ~7400 20µm thick sections

• Stain cell bodies and scan in light 
microscope at 1µm resolution

• Delineate brain areas in every 60th section 
of 10 different brains

• Average annotations in common reference 
space to obtain probabilistic maps
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Observer Independent Method
• Distinguished by variations of cell 

distribution in cortical laminae and with 
respect to columnar organization

• Schleicher et al., 1999: Observer 
independent method for parcellation

• Time and labor intensive, does not scale 
with high throughput imaging

• Idea: Use Deep Learning to speed up and 
support mapping process

A. Schleicher et al., “Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative 
approach to cytoarchitectonics”, Neuroimage, vol 9, no 1, pp. 165-177, 1999
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Basic principle of Deep Learning

Input Output Correct
output

Deep Neural Network

 

Loss function

Error between 
output and correct output
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Dataset for automatic cytoarchitecture classification

16.06.2020

V2

V2 - oblique

V4lp

V2 - artifact

INM-1 brain collection
• Collection of donor brains
• Data sizes for different scanning protocols

• every 15th section: ~3.5 TB
• every section: ~50 TB
• every section w. z-scanning (30 layers): ~1.5 PB

• ~400 sections with partial brain area annotations

Challenges
• Complex and ambiguous cell patterns
• Inter-individual differences between brains
• High variability due to staining, sectioning artifacts, 

changing angle between sectioning plane and brain 
surface (oblique cuts)
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Technical Challenges
• Training on whole images (~10 GB) is impossible, 

we train on large high-resolution image patches
• ImageNet: 224x224 pixels
• Ours: ~2000x2000 pixels (4x4 mm²)

• Dataset does not fit into memory and has to be 
read demand

• Pre-processing of large images (e.g. data 
augmentation) is computationally expensive

• GPU memory is limited, few patches fit on a single 
GPU

16.06.2020
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HPC to the rescue!

• Data is stored close to the JSC HPC systems 
→ Fast I/O

• I/O and pre-processing can be parallelized across 
many CPUs 
→ Fast training sample creation

• Training can be parallelized across many GPUs 
→ Fast training pipeline

• Large scale experiments of hyperparameter 
exploration can be parallelized across many nodes
→ Fast iterative development loop

16.06.2020
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NodeNode Node

HPC enabled training workflow

16.06.2020
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● Python 3
● Pytorch/TensorFlow
● mpi4py
● h5py
● OpenCV
● numpy
● SciPy
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Workflow performance on JURECA and JUWELS
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Deep Learning Frameworks

• Model neural network as computation graph
• Nodes are operations (e.g. matrix multiply)
• Edges are tensors
• Enables automatic differentiation
• Static or dynamic construction

• Many operations can be efficiently executed on 
GPUs, for example
• Matrix multiplication (Fully-connected layer)
• Convolution

• Focused on Deep Learning, but applicable to 
many other applications

16.06.2020

Source: Understand TensorFlow by mimicking its API from scratch

https://medium.com/@d3lm/understand-tensorflow-by-mimicking-its-api-from-scratch-faa55787170d
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Common libraries used by Deep Learning Frameworks

• CUDA

• cuDNN (NVIDIA CUDA Deep Neural Network library)

• NCCL (NVIDA Collective Communication Library)

16.06.2020
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Popular Deep Learning Frameworks

Popular
• TensorFlow 1.x/2.x (Google)
• (tf.)keras (created François Chollet, now at Google)
• pytorch (Facebook)
• MxNet+GluonCV+GluonNLP+GluonTS (Apache)
• CNTK (Microsoft)

Older frameworks (but you still find code for them)
• theano (Montreal Institute for Learning Algorithms)
• Caffe (relies more heavily on C++)

16.06.2020
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TensorFlow 1.x

• Computation graph is statically defined (define-and-run)

• Graph can be automatically optimized before execution

• Shortcomings (addressed in TensorFlow 2.x)
• Hard to debug
• Heavy use of global variables and states
• Overloaded API

16.06.2020

import tensorflow as tf

# Input nodes
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)

# Define computation graph
add = tf.add(a, b)
mul = tf.multiply(a, b)
div = tf.divide(add, mul)

# Execute graph with concrete input
with tf.Session() as sess:
   print(sess.run(div, feed_dict={a: 15, 
b: 5}))
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TensorFlow 2.x

• Computation graph is dynamically defined

• Computation can be structured in functions
• Improved code structure
• Functions can be compiled for improved performance
• Compilation can be temporarily disabled for debugging

• API cleanup
• tf.keras main API for neural nets

16.06.2020

import tensorflow as tf

# Dynamic computation graph
a = tf.convert_to_tensor( 15)
b = tf.convert_to_tensor( 5)

add = tf.add(a, b)
mul = tf.multiply(a, b)
div = tf.divide(add, mul)

# Compile graph using function
@tf.function()
def compute(a, b):
 add = tf.add(a, b)
 mul = tf.multiply(a, b)
 return tf.divide(add, mul)

compute(15, 5)
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import tensorflow as tf

# Get the data
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# Define the model
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten( input_shape=(28, 28)),
 tf.keras.layers.Dense( 128, activation='relu'),
 tf.keras.layers.Dropout( 0.2),
 tf.keras.layers.Dense( 10)
])

# Define loss function
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()

# Compile model (set optimizer, loss function and metrics)
model.compile( optimizer='adam', loss=loss_fn, 
metrics=['accuracy'])

# Train the model
model.fit(x_train, y_train, epochs=5)

# Apply the model
model.evaluate(x_test,  y_test, verbose=2)

(tf.)keras

• API specification for building and training 
neural networks

• Standalone implementation supports multiple 
backends

• Part of TensorFlow 2.x as tf.keras

• Allows training models with very few lines of 
code

16.06.2020
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PyTorch

• Computation graph is dynamically defined

• numpy-oriented interface (“numpy with GPUs”)

• Fine-grained control through low-level API

• Optional third-party libraries to avoid boilerplate code 
(e.g. Lightning)

16.06.2020

import torch

# Define variables
a = torch.from_numpy( 15)
b = torch.from_numpy( 5)

# Move to third GPU
a = a.to("cuda:2")
b = b.to("cuda:2")

# Compute (on GPU)
add = torch.add(a, b)
mult = torch.mul(a, b)
div = torch.div(add, mult)
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TensorFlow or PyTorch?
TensorFlow (+tf.keras) 
• Allows quick and easy experimentation with standard processing 

pipelines and models
• Many things can be accomplished in few lines of code
• Offers various ways to deploy trained models to production (e.g. 

TensorFlow.js for the web or TensorFlow Lite for mobile and IoT)
• More exotic experiments can be hard to implement

PyTorch
• Development feels more “phytonic”
• Lower level API allows more fine grained control
• Non-standard experiments are often easier to implement
• Higher flexibility comes at the cost of more boilerplate code (e.g. 

training loop)

16.06.2020
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Distributed Deep Learning

• Distributed Deep Learning enables training across multiple GPUs 
on one node or across multiple nodes

• Reduces training time or allows training of larger models

• Data parallelism
• Each GPU gets a replica of the model
• Each GPU processes different samples
• Gradients are averaged before updating the weights

• Model parallelism (rarely used in practice)
• Split one model across multiple GPUs
• Useful for very large models which do not fit on one GPU

16.06.2020

GPU 1 GPU 2
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Data parallel training

16.06.2020

Average A
llreduce

GPUB1 gradients 1 gradients 1-8

GPUB2 gradients 2 gradients 1-8

GPUB3 gradients 3 gradients 1-8

GPUB4 gradients 4 gradients 1-8

GPUB5 gradients 5 gradients 1-8

GPUB6 gradients 6 gradients 1-8

GPUB7 gradients 7 gradients 1-8

GPUB8 gradients 8 gradients 1-8

• Well supported in all frameworks

• Most common variant: Synchronized 
Gradient Descent

• Gradient averaging can be efficiently 
implemented, eg. with MPI or NCCL
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Distributed training in TensorFlow with Horovod

16.06.2020

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Define the model
model = tf.keras.Sequential([
   tf.keras.layers.Conv2D( 32, [3, 3], activation='relu'),
   ...
   tf.keras.layers.Dropout( 0.5),
   tf.keras.layers.Dense( 10, activation='softmax')
])

opt = tf.optimizers.Adam( learning_rate=0.1)

model.compile( loss=tf.losses.SparseCategoricalCrossentropy(),
                   optimizer=opt,
                   metrics=['accuracy'],
                   experimental_run_tf_function =False)

model.fit(x_train, y_train, epochs=5)

import tensorflow as tf
import horovod.tensorflow.keras as hvd

# Initialize Horovod
hvd.init()
# Assign GPU to this process
gpus = tf.config.experimental.list_physical_devices( 'GPU')
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Define the model
model = ...

opt = tf.optimizers.Adam( learning_rate=0.1)
# Make optimizer distributed
opt = hvd.DistributedOptimizer(opt)

model.compile( loss=tf.losses.SparseCategoricalCrossentropy(),
             optimizer=opt,
             metrics=['accuracy'],
             experimental_run_tf_function =False)

# Make sure all models start with the same weights
callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback( 0), ]
model.fit(x_train, y_train, epochs=5, callbacks=callbacks)

Assign GPU

Modify optimizer

Init weights

Note: Horovod also supports PyTorch and MXNet
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from torch import nn
from torchvision.models import resnet50
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

# Initialize distributed environment
rank = ...  # e.g. by mpi4py
size = ...
dist.init_process_group( "nccl", "tcp://127.0.0.1:12345", rank, size)

data = ...

# Create a model
model = resnet50()
# Model wrapper takes care of averaging gradients
model = DistributedDataParallel(model, device_ids=[rank, ])
# Move model to correct GPU
mode = model.to(rank)

# Create optimizer
opt = optim.SGD(model.parameters(), lr=0.1)
loss_fn = nn.MSELoss().to(rank)

# Training loop
for x, y in data:
   opt.zero_grad()
   y_ = model(x)
   loss = loss_fn(y, y_)
   loss.backward()
   opt.step()

Distributed training in PyTorch

16.06.2020

Init

Modify model

from torch import nn
from torchvision.models import resnet50
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

data = ...

# Create a model
model = resnet50()
# Move model to first GPU
mode = model.cuda()

# Create optimizer
opt = optim.SGD(model.parameters(), lr=0.1)
loss_fn = nn.MSELoss().cuda()

# Training loop
for x, y in data:
   opt.zero_grad()
   y_ = model(x)
   loss = loss_fn(y, y_)
   loss.backward()
   opt.step()
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Deep Learning on “Big Data”

16.06.2020

• Most Deep Learning applications rely on large datasets, but 
individual samples are mostly not very large
• Example: ImageNet contains millions of images, but each 

image is not extremely large (e.g. 224x224 pixels)

• Some applications have to handle large datasets and large 
sample size, for example
• medical imaging (2D and 3D data)
• remote sensing
• astronomy
• …

• GPU memory often becomes the limiting factor when training 
deep models for such applications
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Trade speed for memory by gradient checkpointing

16.06.2020

• Intermediate layer outputs are usually kept in memory, 
as they are needed for gradient computation (chain rule 
of calculus)

• Hidden representations of large high-dimensional data 
(e.g. images or 3D volumes) can take massive amounts 
of space

• Idea: Trade speed for memory by discarding 
intermediate outputs and recompute them on demand 
during gradient computation Source: Make huge neural nets fit in memory

https://github.com/cybertronai/gradient-checkpointing
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• Intermediate layer outputs are usually kept in memory, 
as they are needed for gradient computation (chain rule 
of calculus)

• Hidden representations of large high-dimensional data 
(e.g. images or 3D volumes) can take massive amounts 
of space

• Idea: Trade speed for memory by discarding some 
intermediate outputs and recompute them on demand 
during gradient computation Source: Make huge neural nets fit in memory

https://github.com/cybertronai/gradient-checkpointing
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Gradient checkpointing in PyTorch

16.06.2020

from torch import nn

class Model(nn.Module):
   def __init__(self):
       super().__init__()
       self.conv1 = nn.Conv2d( 1, 16, kernel_size=3)
       self.conv2 = nn.Conv2d( 16, 32, kernel_size=3)
       self.conv3 = nn.Conv2d( 32, 64, kernel_size=3)
       self.conv4 = nn.Conv2d( 64, 128, 
kernel_size=3)

   def forward(self, x):
       x = self.conv1(x)
       x = self.conv2(x)
       x = self.conv3(x)
       x = self.conv4(x)

       return x

from torch import nn
import torch.utils.checkpoint as cp

class Model(nn.Module):
   def __init__(self):
       super().__init__()
       self.conv1 = nn.Conv2d( 1, 16, kernel_size=3)
       self.conv2 = nn.Conv2d( 16, 32, kernel_size=3)
       self.conv3 = nn.Conv2d( 32, 64, kernel_size=3)
       self.conv4 = nn.Conv2d( 64, 128, 
kernel_size=3)

   def _make_cp_fun(self):
       def _cp_fun(x):
           x = self.conv1(x)
           x = self.conv2(x)
           return x
       return _cp_fun

   def forward(self, x):
       x = cp.checkpoint( self._make_cp_fun(), x)
       x = self.conv3(x)
       x = self.conv4(x)

       return x
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Mixed Precision Training
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• Deep Learning typically uses float32 (single precision) for 
parameters and layer outputs

• Using float16 (half precision) speeds up computation and 
halves memory requirements

• Mixed precision training
• Use float16 for gradients and layer outputs
• Keep parameters in float32
• Internally scale loss and gradients to prevent underflow

• TensorCores in modern NVIDIA GPUs (Volta, Turing, Ampere) 
specifically speed up half precision operations
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Mixed Precision Training in PyTorch (1.6-nightly build)

16.06.2020

from torch.cuda import amp

# Creates model and optimizer in default precision
model = ...
optimizer = ...
data = ...

# Creates a GradScaler once at the beginning of training.
scaler = amp.GradScaler()

for input, target in data:
   optimizer.zero_grad()

   # Runs the forward pass with autocasting.
   with amp.autocast():
       output = model(input)
       loss = loss_fn(output, target)

   # Scales loss.  Calls backward() on scaled loss to create scaled gradients.
   scaler.scale(loss).backward()

   # scaler.step() first unscales the gradients of the optimizer's assigned params.
   scaler.step(optimizer)

   # Updates the scale for next iteration.
   scaler.update()
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Christian Schiffer
Email: c.schiffer@fz-juelich.de

Phone: +49 2461 61-3486

Team Big Data Analytics
Institute of Neuroscience and Medicine (INM-1)
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