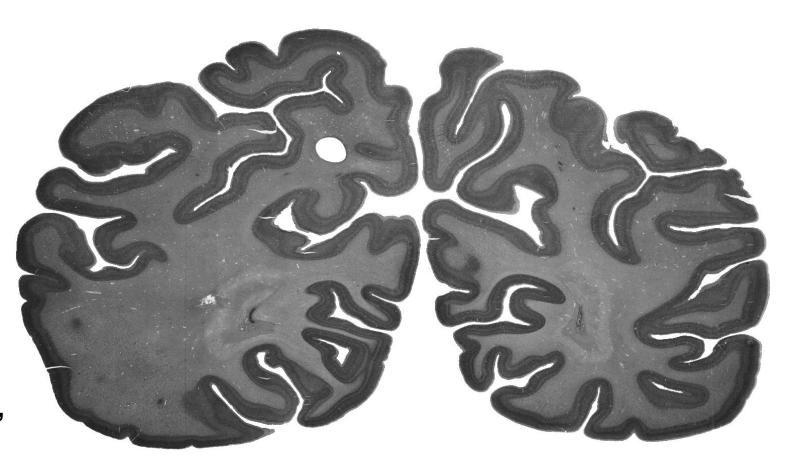


Terabyte-scale image analysis with HPC-enabled Deep Learning for building a map of the human brain JSC MSA: GPU SEMINAR

16.06.2020 I CHRISTIAN SCHIFFER (TEAM BIG DATA ANALYTICS, INM-1, FORSCHUNGSZENTRUM JÜLICH)

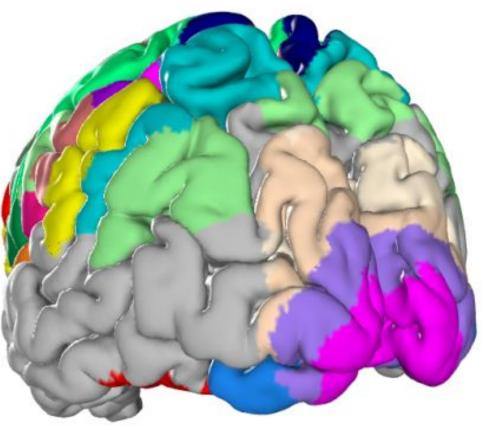
Outline

- Human Brain Mapping
- Deep Learning on HPC
 - Frameworks
 - Distributed Deep Learning
- Deep Learning on "Big Data"



Building a Human Brain Atlas for Cytoarchitecture

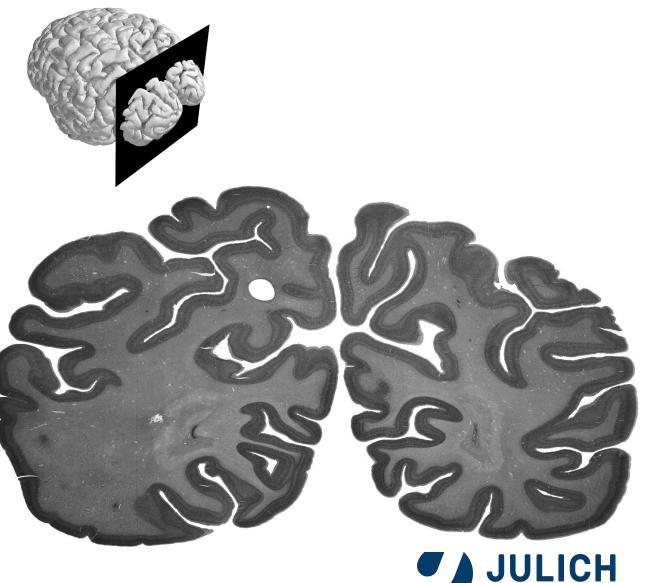
- Three-dimensional model of the human brain
- Data from multiple modalities in common space
- One aspect: Cytoarchitectonic areas
- **Cytoarchitectonic mapping** to delineate cortical areas in high-resolution histological sections



JuBrain Probabilistic Atlas http://www.jubrain.fz-juelich.de

Histological Human Brain Sections

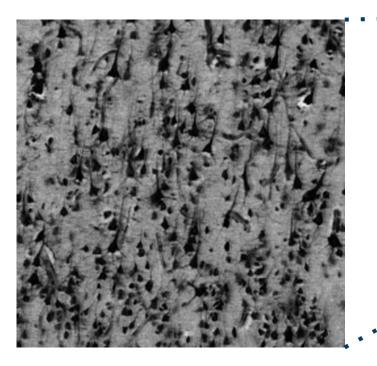
- Cut brain in ~7400 20µm thick sections
- Stain cell bodies and scan in light microscope at 1µm resolution

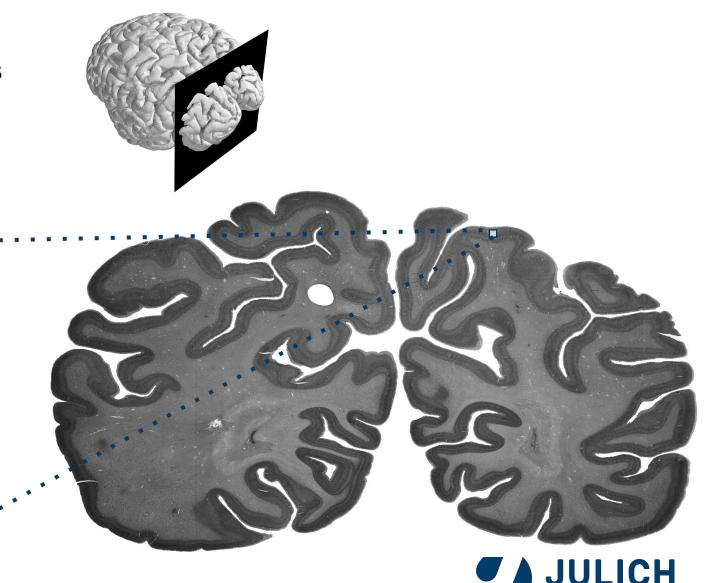


Forschungszentrum

Histological Human Brain Sections

- Cut brain in ~7400 20µm thick sections
- Stain cell bodies and scan in light microscope at 1µm resolution

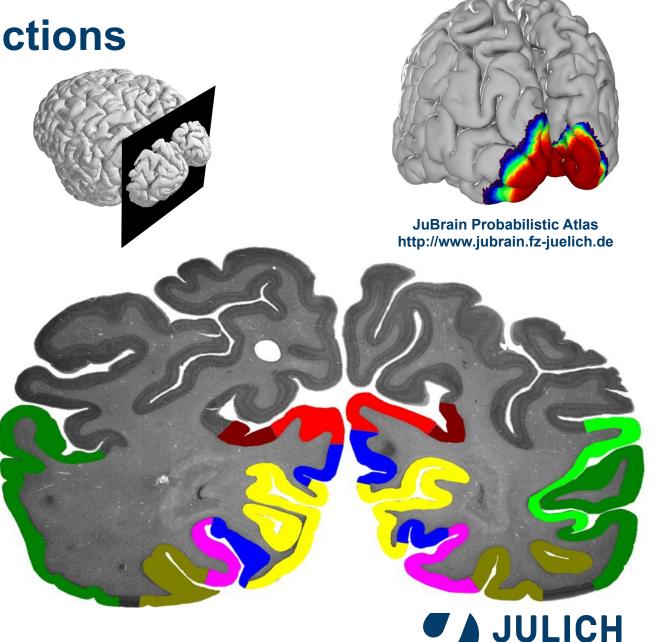




Forschungszentrum

Histological Human Brain Sections

- Cut brain in ~7400 20µm thick sections
- Stain cell bodies and scan in light microscope at 1µm resolution
- Delineate brain areas in every 60th section of 10 different brains
- Average annotations in common reference space to obtain probabilistic maps

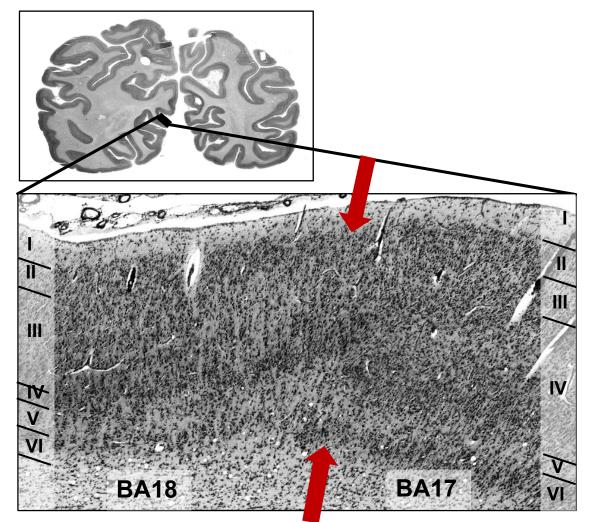


Forschungszentrum

Observer Independent Method

- Distinguished by variations of cell distribution in cortical laminae and with respect to columnar organization
- Schleicher et al., 1999: Observer independent method for parcellation
- Time and labor intensive, does not scale with high throughput imaging
- Idea: Use Deep Learning to speed up and support mapping process

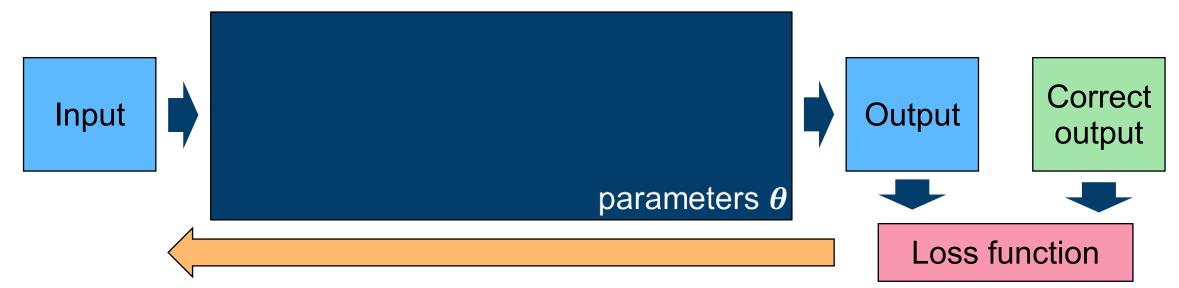
Member of the Helmholtz Association



A. Schleicher et al., "Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative approach to cytoarchitectonics", Neuroimage, vol 9, no 1, pp. 165-177, 1999

Basic principle of Deep Learning

Deep Neural Network

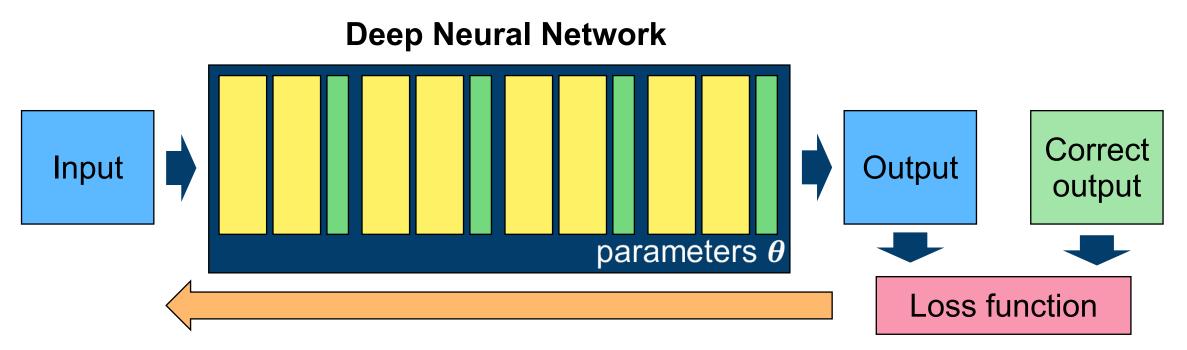


Gradient based optimization

(update θ to reduce errors)

Error between output and correct output

Basic principle of Deep Learning



Gradient based optimization

(update θ to reduce errors)

Error between output and correct output

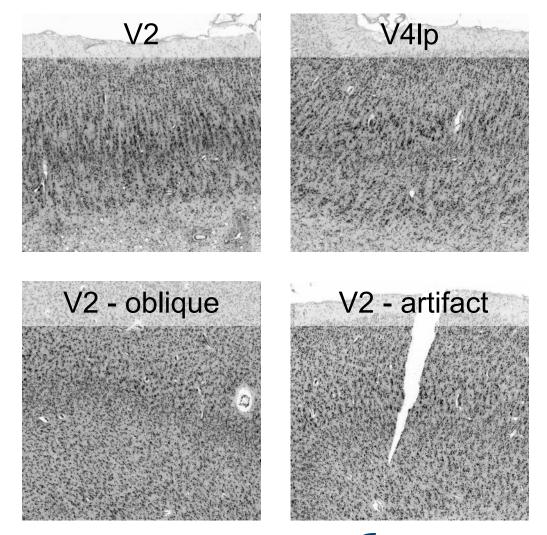
Dataset for automatic cytoarchitecture classification

INM-1 brain collection

- Collection of donor brains
- Data sizes for different scanning protocols
 - every 15th section: ~3.5 TB
 - every section: ~50 TB
 - every section w. z-scanning (30 layers): ~1.5 PB
- ~400 sections with partial brain area annotations

Challenges

- Complex and ambiguous cell patterns
- Inter-individual differences between brains
- High variability due to staining, sectioning artifacts, changing angle between sectioning plane and brain surface (*oblique cuts*)



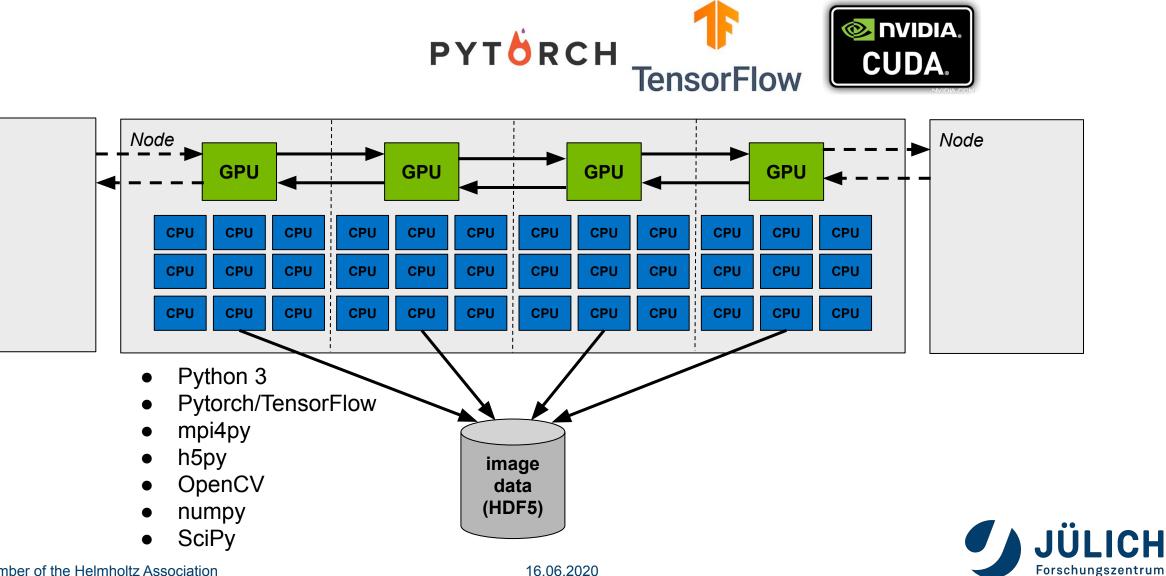
Technical Challenges

- Training on whole images (~10 GB) is impossible, we train on large high-resolution **image patches**
 - ImageNet: 224x224 pixels
 - Ours: ~2000x2000 pixels (4x4 mm²)
- Dataset does not fit into memory and has to be read demand
- **Pre-processing** of large images (e.g. data augmentation) is computationally expensive
- GPU memory is limited, few patches fit on a single GPU

HPC to the rescue!

- Data is stored close to the JSC HPC systems \rightarrow Fast I/O
- I/O and pre-processing can be parallelized across many CPUs
 - \rightarrow Fast training sample creation
- Training can be parallelized across many GPUs
 → Fast training pipeline
- Large scale experiments of hyperparameter exploration can be parallelized across many nodes → Fast iterative development loop

HPC enabled training workflow

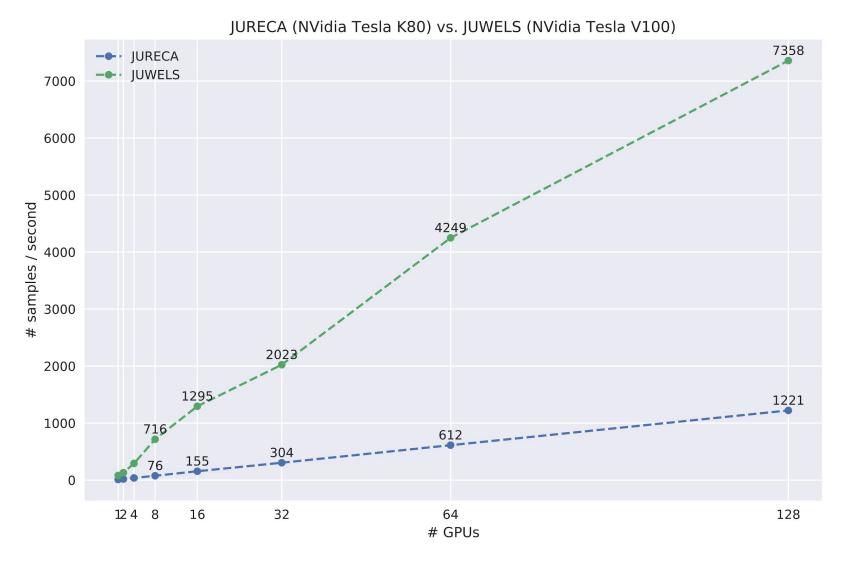


Member of the Helmholtz Association

Node

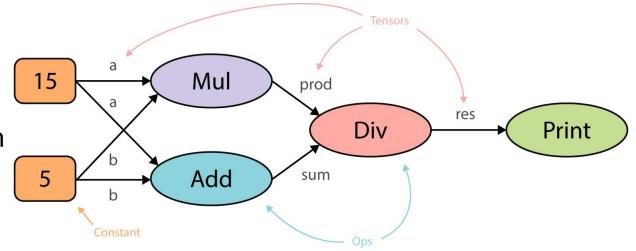
16.06.2020

Workflow performance on JURECA and JUWELS



Deep Learning Frameworks

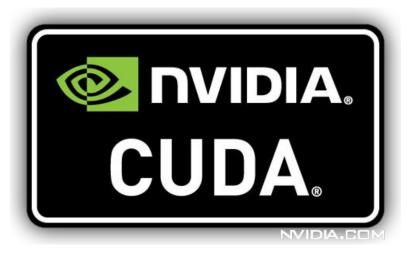
- Model neural network as computation graph
 - Nodes are **operations** (e.g. matrix multiply)
 - Edges are **tensors**
 - Enables automatic differentiation
 - Static or dynamic construction
- Many operations can be efficiently executed on GPUs, for example
 - Matrix multiplication (Fully-connected layer)
 - Convolution
- Focused on Deep Learning, but applicable to **many other applications**

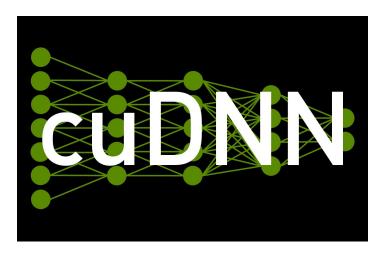


Source: Understand TensorFlow by mimicking its API from scratch

Common libraries used by Deep Learning Frameworks

- CUDA
- **cuDNN** (NVIDIA CUDA Deep Neural Network library)
- NCCL (NVIDA Collective Communication Library)





Popular Deep Learning Frameworks

Popular

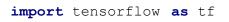
- TensorFlow 1.x/2.x (Google)
- (tf.)keras (created François Chollet, now at Google)
- pytorch (Facebook)
- **MxNet**+GluonCV+GluonNLP+GluonTS (Apache)
- CNTK (Microsoft)

Older frameworks (but you still find code for them)

- theano (Montreal Institute for Learning Algorithms)
- **Caffe** (relies more heavily on C++)

TensorFlow 1.x

- Computation graph is **statically** defined (define-and-run)
- Graph can be automatically optimized before execution
- **Shortcomings** (addressed in TensorFlow 2.x)
 - Hard to debug
 - Heavy use of global variables and states
 - **Overloaded API** •



Input nodes

- a = tf.placeholder(tf.int16)
- b = tf.placeholder(tf.int16)

Define computation graph add = tf.add(a, b)mul = tf.multiply(a, b)div = tf.divide(add, mul)

Execute graph with concrete input with tf.Session() as sess: print(sess.run(div, feed dict={a: 15, b: 5}))

TensorFlow 2.x

- Computation graph is **dynamically** defined
- Computation can be structured in **functions**
 - Improved code structure
 - Functions can be compiled for improved performance
 - Compilation can be temporarily disabled for debugging
- API cleanup
 - tf.keras main API for neural nets

import tensorflow as tf

Dynamic computation graph
a = tf.convert_to_tensor(15)
b = tf.convert_to_tensor(5)

add = tf.add(a, b)
mul = tf.multiply(a, b)
div = tf.divide(add, mul)

```
# Compile graph using function
@tf.function()
def compute(a, b):
  add = tf.add(a, b)
  mul = tf.multiply(a, b)
  return tf.divide(add, mul)
```

compute(15, 5)

(tf.)keras

```
API specification for building and training
neural networks
```

- Standalone implementation supports **multiple** backends
- Part of TensorFlow 2.x as tf.keras
- Allows training models with very few lines of code

import tensorflow as tf

```
# Get the data
mnist = tf.keras.datasets.mnist
(x train, y train), (x test, y test) = mnist.load data()
x train, x test = x train / 255.0, x test / 255.0
```

```
# Define the model
```

```
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])
```

```
# Define loss function
loss fn = tf.keras.losses.SparseCategoricalCrossentropy()
```

```
# Compile model (set optimizer, loss function and metrics)
model.compile(optimizer='adam', loss=loss fn,
metrics=['accuracy'])
```

```
# Train the model
model.fit(x train, y train, epochs=5)
```

Apply the model model.evaluate(x_test, y_test, verbose=2)

PyTorch

- Computation graph is **dynamically** defined
- **numpy-oriented** interface (*"numpy with GPUs"*)
- Fine-grained control through low-level API
- Optional third-party libraries to avoid boilerplate code (e.g. Lightning)

Define variables a = torch.from numpy(15)b = torch.from numpy(5)# Move to third GPU

a = a.to("cuda:2") b = b.to("cuda:2")

Compute (on GPU) add = torch.add(a, b)mult = torch.mul(a, b) div = torch.div(add, mult)

TensorFlow or PyTorch?

TensorFlow (+tf.keras)

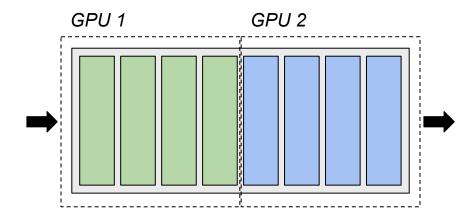
- Allows quick and easy experimentation with standard processing pipelines and models
- Many things can be accomplished in few lines of code
- Offers various ways to deploy trained models to production (e.g. TensorFlow.js for the web or TensorFlow Lite for mobile and IoT)
- More exotic experiments can be hard to implement

PyTorch

- Development feels more "phytonic"
- Lower level API allows more fine grained control
- Non-standard experiments are often easier to implement
- Higher flexibility comes at the cost of more boilerplate code (e.g. training loop)

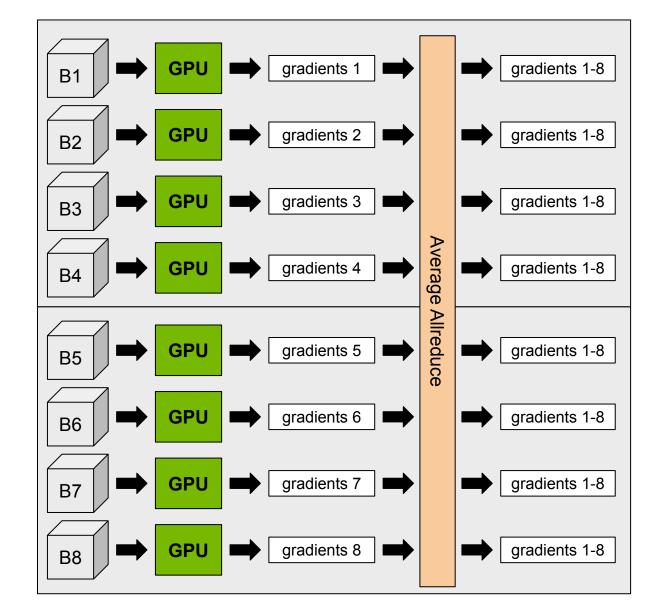
Distributed Deep Learning

- Distributed Deep Learning enables training across multiple GPUs
 on one node or across multiple nodes
- Reduces training time or allows training of larger models
- Data parallelism
 - Each GPU gets a replica of the model
 - Each GPU processes different samples
 - Gradients are averaged before updating the weights
- Model parallelism (rarely used in practice)
 - Split one model across multiple GPUs
 - Useful for very large models which do not fit on one GPU



Data parallel training

- Well supported in all frameworks
- Most common variant: Synchronized
 Gradient Descent
- Gradient averaging can be efficiently implemented, eg. with MPI or NCCL



Distributed training in TensorFlow with Horovod

```
Assign GPU
import tensorflow as tf
                                                               import tensorflow as tf
                                                               import horovod.tensorflow.keras as hvd
 mnist = tf.keras.datasets.mnist
 (x train, y train), (x test, y test) = mnist.load data()
                                                                # Initialize Horovod
                                                                hvd.init()
 # Define the model
                                                               # Assign GPU to this process
model = tf.keras.Sequential([
                                                               gpus = tf.config.experimental.list physical devices( 'GPU')
   tf.keras.layers.Conv2D(32, [3, 3], activation='relu'),
                                                               tf.config.experimental.set visible devices(gpus[hvd.local rank()],
                                                                                                                                     'GPU'
    . . .
   tf.keras.layers.Dropout(0.5),
                                                               mnist = tf.keras.datasets.mnist
   tf.keras.layers.Dense(10, activation='softmax')
                                                               (x train, y train), (x test, y test) = mnist.load data()
 1)
                                                               # Define the model
opt = tf.optimizers.Adam(learning rate=0.1)
                                                               model = \ldots
                                                                                         Modify optimizer
                                                                                                                                HOROVOD
                                                               opt = tf.optimizers.Adam(learning rate=0.1)
model.compile(loss=tf.losses.SparseCategoricalCrossentropy(),
                    optimizer=opt,
                                                               # Make optimizer distributed
                                                               opt = hvd.DistributedOptimizer(opt)
                    metrics=['accuracy'],
                    experimental run tf function =False)
                                                               model.compile(loss=tf.losses.SparseCategoricalCrossentropy(),
model.fit(x train, y train, epochs=5)
                                                                             optimizer=opt,
                                                                            metrics=['accuracy'],
                                                                             experimental run tf function =False)
                                                                                                                    Init weights
                                                               # Make sure all models start with the same weights
                                                               callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback( 0),
Note: Horovod also supports PyTorch and MXNet
```

model.fit(x train, y train, epochs=5, callbacks=callbacks)

Distributed training in PyTorch

from torch import nn
from torchvision.models import resnet50
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

data = \dots

Create a model
model = resnet50()
Move model to first GPU
mode = model.cuda()

```
# Create optimizer
opt = optim.SGD(model.parameters(), lr=0.1)
loss_fn = nn.MSELoss().cuda()
```

Training loop for x, y in data: opt.zero_grad() y_ = model(x) loss = loss_fn(y, y_) loss.backward() opt.step()

from torch import nn
from torchvision.models import resnet50
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

Initialize distributed environment
rank = ... # e.g. by mpi4py
size = ...
dist.init_process_group("nccl", "tcp://127.0.0.1:12345", rank, size)

data = \dots

Create a model
model = resnet50()

Modify model

Init

Model wrapper takes care of averaging gradients
model = DistributedDataParallel(model, device_ids=[rank,])
Move model to correct GPU
mode = model.to(rank)

Create optimizer
opt = optim.SGD(model.parameters(), lr=0.1)
loss fn = nn.MSELoss().to(rank)

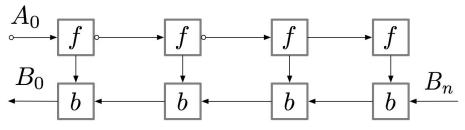
```
# Training loop
for x, y in data:
    opt.zero_grad()
    y_ = model(x)
    loss = loss_fn(y, y_)
    loss.backward()
    opt.step()
```

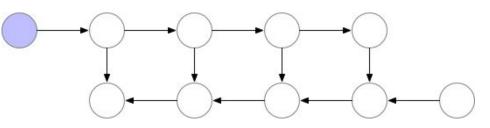

Deep Learning on "Big Data"

- Most Deep Learning applications rely on large datasets, but individual samples are mostly not very large
 - **Example:** ImageNet contains millions of images, but each image is not extremely large (e.g. 224x224 pixels)
- Some applications have to handle large datasets <u>and</u> large sample size, for example
 - medical imaging (2D and 3D data)
 - remote sensing
 - astronomy
 - . .
- **GPU memory** often becomes the limiting factor when training deep models for such applications

Trade speed for memory by gradient checkpointing

- Intermediate layer outputs are usually kept in memory, as they are needed for gradient computation (chain rule of calculus)
- Hidden representations of large high-dimensional data (e.g. images or 3D volumes) can take massive amounts of space
- Idea: Trade speed for memory by discarding intermediate outputs and recompute them on demand during gradient computation

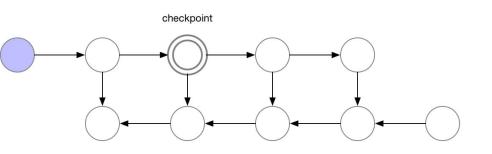


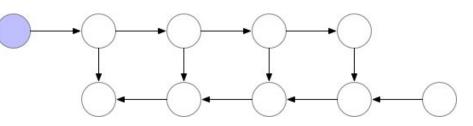


Source: Make huge neural nets fit in memory

Trade speed for memory by gradient checkpointing

- Intermediate layer outputs are usually kept in memory, as they are needed for gradient computation (chain rule of calculus)
- Hidden representations of large high-dimensional data (e.g. images or 3D volumes) can take massive amounts of space
- Idea: Trade speed for memory by discarding some intermediate outputs and recompute them on demand during gradient computation





Source: Make huge neural nets fit in memory

Gradient checkpointing in PyTorch

from torch import nn

```
class Model(nn.Module):
    def __init__ (self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=3)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3)
        self.conv3 = nn.Conv2d(32, 64, kernel_size=3)
        self.conv4 = nn.Conv2d(64, 128,
kernel_size=3)
```

```
def forward(self, x):
    x = self.conv1(x)
    x = self.conv2(x)
    x = self.conv3(x)
    x = self.conv4(x)
```

return x

```
from torch import nn
import torch.utils.checkpoint as cp
```

```
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=3)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3)
        self.conv3 = nn.Conv2d(32, 64, kernel_size=3)
        self.conv4 = nn.Conv2d(64, 128,
kernel size=3)
```

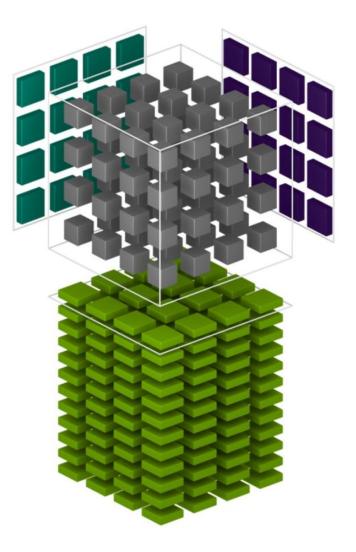
```
def _make_cp_fun(self):
    def _cp_fun(x):
        x = self.conv1(x)
        x = self.conv2(x)
        return x
    return _cp_fun
```

def forward(self, x):
 x = cp.checkpoint(self._make_cp_fun(), x)
 x = self.conv3(x)
 x = self.conv4(x)

return x

Mixed Precision Training

- Deep Learning typically uses float32 (single precision) for parameters and layer outputs
- Using float16 (half precision) speeds up computation and halves memory requirements
- Mixed precision training
 - Use float16 for gradients and layer outputs
 - Keep parameters in float32
 - Internally scale loss and gradients to prevent underflow
- **TensorCores** in modern NVIDIA GPUs (Volta, Turing, Ampere) specifically speed up half precision operations



Mixed Precision Training in PyTorch (1.6-nightly build)

from torch.cuda import amp

Creates model and optimizer in default precision
model = ...
optimizer = ...
data = ...

Creates a GradScaler once at the beginning of training.
scaler = amp.GradScaler()

```
for input, target in data:
    optimizer.zero grad()
```

```
# Runs the forward pass with autocasting.
with amp.autocast():
```

```
output = model(input)
loss = loss fn(output, target)
```

Scales loss. Calls backward() on scaled loss to create scaled gradients.
scaler.scale(loss).backward()

scaler.step() first unscales the gradients of the optimizer's assigned params.
scaler.step(optimizer)

```
# Updates the scale for next iteration.
scaler.update()
```


Christian Schiffer

Email: <u>c.schiffer@fz-juelich.de</u> Phone: +49 2461 61-3486

Human Brain Project

Team Big Data Analytics Institute of Neuroscience and Medicine (INM-1)

HELMHOLTZAI ARTIFICIAL INTELLIGENCE COOPERATION UNIT

