
Markus Hrywniak, 23rd June 2020

CUDA 11 AND A100 -
WHAT’S NEW?

2

TOPICS FOR TODAY

Ampere architecture – A100, powering DGX–A100, HGX-A100... and soon, FZ Jülich‘s
JUWELS Booster

New CUDA 11 Toolkit release

Overview of features

Talk next week: Third generation Tensor Cores

GTC talks go into much more details. See references!

3

HGX-A100 4-GPU HGX-A100 8-GPU

• 4 A100 with NVLINK • 8 A100 with NVSwitch

4

HIERARCHY OF SCALES

Multi-System Rack
Unlimited Scale

Multi-GPU System
8 GPUs

Multi-SM GPU
108 Multiprocessors

Multi-Core SM
2048 threads

5

AMDAHL’S LAW

serial section

parallel section

serial section

parallel section

serial section

Some Parallelism

Program time =
sum(serial times + parallel times)

Increased Parallelism

Parallel sections take less time

Serial sections take same time

Infinite Parallelism

Parallel sections take no time

Serial sections take same time

Time
saved

Amdahl’s Law

Shortest possible
runtime is sum of

serial section times

6

OVERCOMING AMDAHL: ASYNCHRONY & LATENCY

Task Parallelism

Parallel sections overlap with serial sections

Infinite Parallelism

Parallel sections take no time

Serial sections take same time

serial section

parallel section

serial section

parallel section

serial section

Some Parallelism

Program time =
sum(serial times + parallel times)

Split up serial &
parallel components

7

OVERCOMING AMDAHL: ASYNCHRONY & LATENCY

CUDA Concurrency Mechanisms At Every Scope

CUDA Kernel Threads, Warps, Blocks, Barriers

Application CUDA Streams, CUDA Graphs

Node Multi-Process Service, GPU-Direct

System NCCL, CUDA-Aware MPI, NVSHMEM

8

OVERCOMING AMDAHL: ASYNCHRONY & LATENCY

Execution Overheads
Non-productive latencies

(waste)

Operation Latency
Network latencies

Memory read/write

File I/O

... Execution Overheads are waste
Reduced through hardware & system efficiency improvements

Operation Latencies are the cost of doing work
Improve through hardware & software optimization

9

CUDA KEY INITIATIVES

Hierarchy
Programming and running

systems at every scale

Language
Supporting and evolving

Standard Languages

Asynchrony
Creating concurrency at every

level of the hierarchy

Need Picture

Latency
Overcoming Amdahl

with lower overheads for
memory & processing

10

THE NVIDIA AMPERE GPU ARCHITECTURE

NVIDIA GA100 Key Architectural Features

Multi-Instance GPU

Advanced barriers

Asynchronous data movement

L2 cache management

Task graph acceleration

New Tensor Core precisions

For more information see: S21730 - Inside the NVIDIA Ampere Architecture && www.nvidia.com/nvidia-ampere-architecture-whitepaper

https://www.nvidia.com/en-us/gtc/session-catalog/?search=s21730
http://www.nvidia.com/nvidia-ampere-architecture-whitepaper

11

A100 TENSOR-CORE GPU

3rd gen.

NVLINK

2x BW

54 billion transistors in 7 nm

Multi-Instance GPU

A100

H
B
M

2
H

B
M

2
H

B
M

2

H
B
M

2
H

B
M

2
H

B
M

2

GigaThread Engine with MIG Control

L2 Cache L2 Cache

NVLink NVLink NVLink NVLink NVLinkNVLink NVLink NVLink NVLink NVLinkNVLink NVLink Scale UP

40 MB L2

6.7x capacity

108 SMs

6912 CUDA Cores

1.56 TB/s HBM2

1.7x bandwidth

7x

Scale OUT

12

A100 SM

Third-generation Tensor Core
Faster and more efficient

Comprehensive data types

FP64 support

Sparsity acceleration

Asynchronous data movement

and synchronization

Increased L1/SMEM capacity

3rd Gen.

TENSOR

CORE

3rd Gen.

TENSOR

CORE

3rd Gen.

TENSOR

CORE

3rd Gen.

TENSOR

CORE

192 KB L1 Data Cache / Shared Memory

13

ACCELERATING HPC

All results are measured
Except BerkeleyGW, V100 used is single V100 SXM2. A100 used is single A100 SXM4
More apps detail: AMBER based on PME-Cellulose, GROMACS with STMV (h-bond), LAMMPS with Atomic Fluid LJ-2.5, NAMD with v3.0a1 STMV_NVE
Chroma with szscl21_24_128, FUN3D with dpw, RTM with Isotropic Radius 4 1024^3, SPECFEM3D with Cartesian four material model
BerkeleyGW based on Chi Sum and uses 8xV100 in DGX-1, vs 8xA100 in DGX A100

1,6X 1,5X

1,9X

1,5X

2,1X

2,0X

1,7X

1,9X
1,8X

0,0x

0,5x

1,0x

1,5x

2,0x

AMBER GROMACS LAMMPS NAMD Chroma BerkeleyGW FUN3D RTM SPECFEM3D

A100

S
p
e
e
d
u
p

V100

Molecular Dynamics Physics Engineering Geo Science

14

NEW MULTI-INSTANCE GPU (MIG)
Divide a Single GPU Into Multiple Instances, Each With

Isolated Paths Through the Entire Memory System

Up To 7 GPU Instances In a Single A100
Full software stack enabled on each instance, with
dedicated SM, memory, L2 cache & bandwidth

Simultaneous Workload Execution With
Guaranteed Quality Of Service
All MIG instances run in parallel with predictable
throughput & latency, fault & error isolation

Diverse Deployment Environments
Supported with Bare metal, Docker, Kubernetes
Pod, Virtualized Environments

USER0

USER1

USER2

USER3

USER4

USER5

USER6

GPU Instance 0

GPU Instance 6

GPU Instance 1

GPU Instance 2

GPU Instance 3

GPU Instance 4

GPU Instance 5

D
R
A

M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A

M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A

M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A

M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A

M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A

M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A

M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

GPU

SMs

15

LOGICAL VS. PHYSICAL PARTITIONING

GPU MULTI-PROCESS SERVICE

A B C

CUDA MULTI-PROCESS SERVICE CONTROL

PyTorch PyTorchTensorFlow TensorFlow Jarvis + TensorRT TensorRT

Multi-Process Service
Dynamic contention for GPU resources

Single tenant

Multi-Instance GPU
Hierarchy of instances with guaranteed resource allocation

Multiple tenants

16

ASYNC MEMCOPY: DIRECT TRANSFER INTO SHARED MEMORY

1
Direct transfer into shared memory,
bypassing thread resources

HBM
HBM

GPU Memory

A100 SM

L1 Cache

Registers

Shared Memory

Threads

Registers

Threads

1

Asynchronous direct copy to shared memory

1

2

Thread loads data from GPU
memory into registers

Thread stores data into SM
shared memory

Two step copy to shared memory via registers

HBM
HBM

GPU Memory

SM

L1 Cache

Registers

Shared Memory

Threads

Registers

Threads

1

2

1

2

17

ASYNC COPY

Typical way of using shared memory:

__shared__ int smem[1024];

smem[threadIdx.x] = input[index];

Asynchronous load + store in shared Memory

SM

SHM

L1

C
o
m

p
u
te

 U
n
it

s

R
e
g
is

te
rs

L2

LDG.E.SYS R0, [R2] ;

STS [R5], R0 ;

* STALL *

• Wasting registers

• Stalling while the data is loaded

• Wasting L1/SHM bandwidth

18

ASYNC COPY

__shared__ int smem[1024];

__pipeline_memcpy_async(&smem[threadIdx.x], &input[index], sizeof(int));

__pipeline_commit();

__pipeline_wait_prior(0);

Asynchronous load + store in shared Memory

SM

SHM

L1

C
o
m

p
u
te

 U
n
it

s

R
e
g
is

te
rs

L2

Copies the data straight to shared memory asynchronously with 2
possible paths:

• L1 Access (Data gets Cached in L1)

• L1 Bypass (No L1 Caching, 16-Byte vector LDGSTS)

Very flexible scheduling (e.g. multi-stage)

For more details: S21170 (Carter Edwards)

19

ASYNCHRONOUS BARRIERS

Pipelined
processing

Consume Data

Independent
Work

Produce Data

Arrive

Wait

Asynchronous barriers enable
pipelined processing

Single-Stage barriers combine
back-to-back arrive & wait

Consume Data

Produce Data

Single-Stage

Barrier

All threads block on
slowest arrival

Arrive

Wait

20

ASYNCHRONOUS PROGRAMMING MODEL

__device__ void memcpy_example()

{

__shared__ barrier b1, b2;

// initialization omitted

cuda::memcpy_async(/* ... */, b1);

cuda::memcpy_async(/* ... */, b2);

b1.arrive_and_wait();

compute();

b2.arrive_and_wait();

compute();

}

__device__ void split_barrier_example()

{

__shared__ barrier b1, b2;

// initialization omitted

compute_head(part_one);

auto t1 = b1.arrive();

compute_head(part_two);

auto t2 = b2.arrive();

b1.wait(t1);

compute_tail(part_one);

b2.wait(t2);

compute_tail(part_two);

}

Data Compute

For more information see: S21730: Inside the NVIDIA Ampere Architecture

https://developer.nvidia.com/gtc/2020/video/s21730

21

HIERARCHY OF LATENCIES

1x 5x 15x

GPU

SM

SM

SM

shmem
L1

shmem
L1

shmem
L1

L2

25x

CPU

DRAM

Network

50x

H
B
M

H
B
M H
B
M

HBM PCIe

22

MANAGING LATENCY: L2 CACHE RESIDENCY CONTROL

1x 5x 15x

13x 3x 1x

Latency

Bandwidth

Shared
Memory L2 Cache GPU Memory

HBM
HBM

HBM

L1

L1

L1

SM

SM

SM

23

MANAGING LATENCY: L2 CACHE RESIDENCY CONTROL

1x 5x 15x

13x 3x 1x

Latency

Bandwidth

Shared
Memory L2 Cache GPU Memory

Specify address range up to 128MB
for persistent caching

Normal & streaming accesses
cannot evict persistent data

Load/store from range persists in L2
even between kernel launches

Normal accesses can still use entire
cache if no persistent data is present

L2 Cache Residency Control

SM

SM

SM

HBM
HBM

HBM

L1

L1

L1

Residency

Control

24

TUNING FOR L2 CACHE
Global Memory Histogram

More frequently accessed histogram bins stay pinned in L2.
Increases hit rate for global memory atomics

__global__ void histogram(

int *hist, int *data, int nbins)

{

int tid = blockIdx.x * blockDim.x

+ threadIdx.x;

int bin_id = data[tid];

// Performing atomics in global memory

atomicAdd(hist + bin_id, 1);

}

25

TUNING FOR L2 CACHE
Setting Persistence on Global Memory Data Region

cudaStreamAttrValue attribute;

auto &window = attribute.accessPolicyWindow;

window.base_ptr = data_ptr;

window.num_bytes = num_bytes;

window.hitRatio = 1.0;

window.hitProp =

cudaAccessPropertyPersisting;

window.missProp =

cudaAccessPropertyStreaming;

cudaStreamSetAttribute(stream,

cudaStreamAttributeAccessPolicyWindow,

&attribute);
cuda_kernel<<<grid_size,block_size,0,stream>>>(data_ptr);

Global memory region can be marked for persistence access using accessPolicyWindow

Subsequent kernel launches in the stream or Cuda graph have persistence property on the marked data

region.

For more detailed API: S21170 (Carter Edwards)

Global Memory

L2 for normal

accesses

L2 for

persisting

accesses

num_bytes

data_ptr

26

TUNING FOR L2 CACHE

Dataset Size = 1024 MB* (256 Million integers)

Size of Persistent Histogram bins = 20 MB* (5 Million integer bins)

Global Memory Histogram

1

1,73

2,48

0

0,5

1

1,5

2

2,5

3

V100 A100 A100 + L2 residency control

S
p
e
e
d
u
p

+43%

For more information see: S21819 - Optimizing for NVIDIA Ampere

https://www.nvidia.com/en-us/gtc/session-catalog/?search=s21819

27

A100 ACCELERATES GRAPH LAUNCH & EXECUTION

New A100 Execution Optimizations for Task Graphs

1. Grid launch latency reduction via whole-graph upload of grid & kernel data

2. Overhead reduction via accelerated dependency resolution

Grid Upload

1

Kernel Upload

1

Block A0

SM 0

Block A1

SM 1

ExecutionGrid Management

D
C

B
A

CUDA Graph Launch

cudaGraphLaunch(g1, s1);

A

B

C

D

Stream Queues

...

...

...

...

...

Full Graph
Completion

2

1

2

Graph Upload

1

28

2.9x Effective RF BW with A100 Tensor Core

2.8x Effective RF capacity with Async-Copy bypassing RF

3.0x Effective SMEM BW with A100 Tensor Core and Async-Copy

2.3x SMEM capacity

2.3x L2 BW

1.7x DRAM BW

1.3x DRAM capacity

2.0x NVLINK BW

Math

RF

SMEM/L1

L2

DRAM

NVLINK

5.0x Sparse Tensor Core (FP16)

9.2x

13.3x Compute Data Compression (max)

6.8x

6.7x L2 capacity, +Residency Control

2.5x Tensor Core math BW (FP16)

A100 STRONG SCALING INNOVATIONS

A100 improvements over V100

Delivering unprecedented levels of performance

29

A100 GPU ACCELERATED MATH LIBRARIES IN CUDA 11.0

cuSOLVER

BF16, TF32 and FP64
Tensor Cores

CUTLASS

BF16 & TF32 Support

cuTENSOR

BF16, TF32 and FP64
Tensor Cores

CUDA Math API

Increased memory BW,
Shared Memory & L2

cuSPARSE

Increased memory BW,
Shared Memory & L2

cuFFT

BF16, TF32 and FP64
Tensor Cores

cuBLAS

BF16, TF32 and FP64
Tensor Cores

nvJPEGCUDA Math APIcuFFT

cuSPARSE cuSOLVERcuBLAS cuTENSOR

nvJPEGCUTLASS

Hardware Decoder

For more information see: S21681 - How CUDA Math Libraries Can Help You Unleash the Power of the New NVIDIA A100 GPU

https://www.nvidia.com/en-us/gtc/session-catalog/?search=21681

30

THE NVIDIA HPC SDK
Apply now at developer.nvidia.com/hpc-sdk

Develop for the NVIDIA HPC Platform: GPU, CPU and Interconnect

HPC Libraries | GPU Accelerated C++ and Fortran | Directives | CUDA

Compatible with HPC Container Maker and 99% of Top500 Systems

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

CUDA

Core
Libraries

libcu++

Thrust

CUB

Math
Libraries

cuBLAS cuTENSOR

cuSPARSE cuSOLVER

cuFFT cuRAND

Communication
Libraries

Open MPI

NVSHMEM

NCCL

DEVELOPMENT

Profilers

Nsight

Systems

Compute

Debugger

cuda-gdb

Host

Device

ANALYSIS

NVIDIA HPC SDK

31

cuSOLVER
DENSE LINEAR ALGEBRA PERFORMANCE ON THE NEW NVIDIA A100 & DGX-A100™

0.0

0.5

1.0

1.5

2.0

2.5

2
0
4
8

4
0
9
6

6
1
4
4

8
1
9
2

1
0
2
4
0

1
2
2
8
8

1
4
3
3
6

1
6
3
8
4

1
8
4
3
2

2
0
4
8
0

2
2
5
2
8

2
4
5
7
6

2
6
6
2
4

2
8
6
7
2

3
0
7
2
0

3
2
7
6
8

3
4
8
1
6

3
6
8
6
4

S
p
e
e
d
-U

p

Matrix Size

Dense Linear Algbra Performance Comparison Between GA100 and GV100

DGETRF (LU)

DGEQRF (QR)

DPOTRF (Cholesky)

DSYEVD (Symm. Eigensolver)

Results comparing CUDA 11.0 cuSOLVER NVIDIA A100 to CUDA 10.2 on V100.

2.4X Speed-up per
GPU performance

32

GPU PROGRAMMING IN 2020 AND BEYOND
Math Libraries | Standard Languages | Directives | CUDA

Incremental Performance

Optimization with Directives

Maximize GPU Performance with

CUDA C++/Fortran

GPU Accelerated

C++ and Fortran

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

#pragma acc data copy(x,y)
{

...

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

...

}

__global__
void saxpy(int n, float a,

float *x, float *y) {
int i = blockIdx.x*blockDim.x +

threadIdx.x;
if (i < n) y[i] += a*x[i];

}

int main(void) {
cudaMallocManaged(&x, ...);
cudaMallocManaged(&y, ...);
...
saxpy<<<(N+255)/256,256>>>(...,x, y)
cudaDeviceSynchronize();
...

}

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

GPU Accelerated Math Libraries

For more information see: S21766 - Inside the NVIDIA HPC SDK: the Compilers, Libraries and Tools for Accelerated Computing

https://www.nvidia.com/en-us/gtc/session-catalog/?search=21766

33

libcu++ : THE CUDA C++ STANDARD LIBRARY

ISO C++ == Language + Standard Library

Strictly conforming to ISO C++, plus conforming extensions

Opt-in, Heterogeneous, Incremental

CUDA C++ == Language + libcu++

34

cuda::std::

Copyable/Movable objects can migrate between host & device

Host & Device can call all member functions

Host & Device can concurrently use synchronization primitives*

Heterogeneous

A subset of the standard library today

Each release adds more functionality
Incremental

Does not interfere with or replace your host standard libraryOpt-in

*Synchronization primitives must be in managed memory and be declared with cuda::std::thread_scope_system

35

CUDA C++ HETEROGENEOUS ARCHITECTURE

CUB is now a fully-supported component of the CUDA Toolkit. Thrust integrates CUB’s high performance kernels.

Thrust

Host code Standard Library-inspired primitives

e.g: for_each, sort, reduce

CUB

Re-usable building blocks, targeting 3 layers of

abstraction

libcu++

Heterogeneous ISO C++ Standard Library

36

CUB: CUDA UNBOUND
Reusable Software Components for Every Layer of the CUDA Programming Model

CPU

user CUDA stub

user application code

GPU

...

user threadblock0

block-wide collective

user threadblockK-1

block-wide collective

user threadblock1

block-wide collective

Device-wide primitives
Parallel sort, prefix scan, reduction, histogram, etc.
Compatible with CUDA dynamic parallelism

Block-wide "collective" primitives
Cooperative I/O, sort, scan, reduction, histogram, etc.
Compatible with arbitrary thread block sizes and types

Warp-wide "collective" primitives
Cooperative warp-wide prefix scan, reduction, etc.

Safely specialized for each underlying CUDA architecture

38

HPC PROGRAMMING IN ISO C++

➢ Introduced in C++17

➢ Parallel and vector concurrency via execution policies

std::execution::par, std::execution::par_seq, std::execution::seq

➢ Several new algorithms in C++17 including

➢ std::for_each_n(POLICY, first, size, func)

➢ Insert std::execution::par as first parameter when calling algorithms

➢ NVC++ 20.5: automatic GPU acceleration of C++17 parallel algorithms

➢ Leverages CUDA Unified Memory

C++ Parallel Algorithms

std::sort(std::execution::par, c.begin(), c.end());

std::unique(std::execution::par, c.begin(), c.end());

39

C++ PARALLEL ALGORITHMS
Lulesh Hydrodynamics Mini-app

https://computing.llnl.gov/projects/co-

design/lulesh

➢ ~9000 lines of C++

➢ Parallel versions in MPI, OpenMP, OpenACC, CUDA, RAJA,
Kokkos, …

➢ Designed to stress compiler vectorization, parallel
overheads, on-node parallelism

https://computing.llnl.gov/projects/co-design/lulesh

40

static inline
void CalcHydroConstraintForElems(Domain &domain, Index_t length,

Index_t *regElemlist, Real_t dvovmax, Real_t& dthydro)
{
#if _OPENMP

const Index_t threads = omp_get_max_threads();
Index_t hydro_elem_per_thread[threads];
Real_t dthydro_per_thread[threads];

#else
Index_t threads = 1;
Index_t hydro_elem_per_thread[1];
Real_t dthydro_per_thread[1];

#endif
#pragma omp parallel firstprivate(length, dvovmax)

{
Real_t dthydro_tmp = dthydro ;
Index_t hydro_elem = -1 ;

#if _OPENMP
Index_t thread_num = omp_get_thread_num();

#else
Index_t thread_num = 0;

#endif
#pragma omp for

for (Index_t i = 0 ; i < length ; ++i) {
Index_t indx = regElemlist[i] ;

if (domain.vdov(indx) != Real_t(0.)) {
Real_t dtdvov = dvovmax / (FABS(domain.vdov(indx))+Real_t(1.e-20)) ;

if (dthydro_tmp > dtdvov) {
dthydro_tmp = dtdvov ;
hydro_elem = indx ;

}
}

}
dthydro_per_thread[thread_num] = dthydro_tmp ;
hydro_elem_per_thread[thread_num] = hydro_elem ;

}
for (Index_t i = 1; i < threads; ++i) {

if(dthydro_per_thread[i] < dthydro_per_thread[0]) {
dthydro_per_thread[0] = dthydro_per_thread[i];
hydro_elem_per_thread[0] = hydro_elem_per_thread[i];

}
}
if (hydro_elem_per_thread[0] != -1) {

dthydro = dthydro_per_thread[0] ;
}
return ;

}

C++ with OpenMP

PARALLEL C++

➢ Composable, compact and elegant

➢ Easy to read and maintain

➢ ISO Standard

➢ Portable – nvc++, g++, icpc, MSVC, …

static inline void CalcHydroConstraintForElems(Domain &domain, Index_t length,
Index_t *regElemlist,
Real_t dvovmax,
Real_t &dthydro) {

dthydro = std::transform_reduce(
std::execution::par, counting_iterator(0), counting_iterator(length),
dthydro, [](Real_t a, Real_t b) { return a < b ? a : b; },
[=, &domain](Index_t i) {
Index_t indx = regElemlist[i];
if (domain.vdov(indx) == Real_t(0.0)) {

return std::numeric_limits<Real_t>::max();
} else {

return dvovmax / (std::abs(domain.vdov(indx)) + Real_t(1.e-20));
}

});
}

Parallel C++17

41

LULESH PERFORMANCE

0

1

2

3

4

5

6

7

C++ on 2s 20c Xeon Gold 6148 C++ on A100 OpenACC on A100

S
p
e
e
d
u
p

Speedup – Higher is Better

Same ISO C++ Code

42

HPC PROGRAMMING IN ISO FORTRAN

Fortran 2018 Fortran 202x

Array Syntax and Intrinsics

➢ NVFORTRAN 20.5

➢ Accelerated matmul, reshape, spread, etc

DO CONCURRENT
➢ NVFORTRAN 20.x

➢ Auto-offload & multi-core

Co-Arrays
➢ Coming Soon

➢ Accelerated co-array images

DO CONCURRENT Reductions

➢ REDUCE subclause added

➢ Support for +, *, MIN, MAX, IAND, IOR, IEOR.

➢ Support for .AND., .OR., .EQV., .NEQV on LOGICAL values

➢ Atomics

ISO is the place for portable concurrency and parallelism

43

MATMUL FP64 matrix multiplyInline FP64 matrix multiply

HPC PROGRAMMING IN ISO FORTRAN
NVFORTRAN Accelerates Fortran Intrinsics with cuTENSOR Backend

0

2

4

6

8

10

12

14

16

18

20

Naïve Inline V100 FORTRAN V100 FORTRAN A100

T
F
L
O

P
s

44

NSIGHT COMPUTE 2020.1

Efficient way to evaluate kernel characteristics, quickly understand potential directions for further
improvements or existing limiters

New Roofline Analysis

Inputs Arithmetic Intensity (FLOPS/bytes)
Performance (FLOPS/s)

Ceilings Peak Memory Bandwidth
Peak FP32/FP64 Performance

45

COMPUTE-SANITIZER

Next-Gen Replacement Tool for cuda-memcheck

Significant performance improvement of 2x - 5x compared with
cuda-memcheck (depending on application size)

Performance gain for applications using libraries such as
CUSOLVER, CUFFT or DL frameworks

cuda-memcheck still supported in CUDA 11.0 (does not support
Arm SBSA)

https://docs.nvidia.com/cuda/compute-sanitizer

Command Line Interface (CLI) Tool Based On The Sanitizer API

For more information see: S22043 – CUDA Developer Tools: Overview and Exciting New Features

https://docs.nvidia.com/cuda/compute-sanitizer

46

SUMMARY

CUDA 11 and Ampere key architecture improvements go hand-in-hand

Huge performance improvement (raw compute, automatic gains through libraries)

New programming model improvements (asynchrony)

More focus on modern C++, standard libraries

HPC SDK as focused distribution of compilers/libraries

47

REFERENCES AND FURTHER DETAILS

nvidia.com/nvidia-ampere-architecture-whitepaper

GTC talks, also check their references:

S21730: Inside the NVIDIA Ampere Architecture

S21760: CUDA New Features And Beyond

S21766: Inside the NVIDIA HPC SDK

http://www.nvidia.com/nvidia-ampere-architecture-whitepaper
https://developer.nvidia.com/gtc/2020/video/s21730
https://developer.nvidia.com/gtc/2020/video/s21760
https://developer.nvidia.com/gtc/2020/video/s21766

THANK YOU

